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Testing Protocol Implementations
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Protocol implementations are stateful reactive systems

➢To expose a vulnerability, send the right messages in the right order 

➢Message structures and orders are often specified in RFCs

RTSP State Machine
Play Message Structure
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Challenges in Protocol Fuzzing
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Generator-based Fuzzing:

Generate random message sequences 

from scratch based on the machine-

readable information about the 

protocol

Mutation-based Fuzzing 

(more widely-used):

Use a set of pre-recorded message 

sequences as seed inputs for mutation

➢ Much manual effort involved

• Some specification missed

• Tedious and error-prone

Several Challenges: 

(C1) Dependence on initial seeds

(C2) Unknown message structure

(C3) Unknown state space

We try to leverage LLMs to resolve these challenges!!
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Linkage to Large Language Models

The capabilities of LLMs have various implications for protocol fuzzing:

➢Network protocols are implemented in accordance with RFCs

• RFCs are written in natural language and often public available,

so LLMs should be able to understand RFCs

➢Messages are in text format transmitted between servers and clients

• LLMs have strong text-generation capabilities

➢Fuzzing is highly automatic and easy-to-use

• Integrating LLMs into fuzzing can still keep these features

4

Do LLMs really have the capabilities to 

resolve challenges in protocol fuzzing?
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Case Study

Study the RTSP protocol with Live555

(C1) Enriching Seed Corpus:

About 80% messages generated are correct

(C2) Lifting Message Grammars: 

All message grammars are identical to the ground truth

(C3) Inducing Interesting State Transitions:

Of the LLM-generated client requests, 69% to 89% induced a transition to a 

different state, covering all state transitions for each individual state
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LLM-guided Protocol Fuzzing
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(C1) Dependence on 

initial seeds:

• Enriching Initial Seeds

(C2) Unknown message 

structure:

• Grammar-guided Mutation(C3) Unknown state space:

• Inferring state space and 

surpassing Coverage 

Plateau
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Evaluation
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Research Questions

RQ.1 State coverage. How much more state coverage does ChatAFL achieve compared to baselines?

RQ.2 Code coverage. How much more code coverage does ChatAFL achieve compared to baselines?

RQ.3 New bugs. Is ChatAFL useful in discovering previously unknown bugs?

Subject Programs

• Live555 • Kamailio

• ProFTPD • Exim

• PureFTPD • Forked-daapd

Comparisons

• AFLNet

• NSFuzz

Our tool ChatAFL and dataset 

are publicly available at:

https://github.com/Ch

atAFLndss/ChatAFL

https://github.com/ChatAFLndss/ChatAFL
https://github.com/ChatAFLndss/ChatAFL
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State Space Coverage
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Achieve same transition 

number 48.12× and 15.94×

faster, respectively

Cover 29.55% and 25.75%

more states, respectively
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Code Coverage
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Achieve same branch number 6.14×

and 10.18× faster, respectively
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Discovering New Bugs
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CVSS Severity Score: 

9.8 Critical

CVSS Severity Score: 

7.5 High
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Summary
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Thanks!!
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