
Large Language Model guided 

Protocol Fuzzing

Ruijie Meng

ruijie@comp.nus.edu.sg

Co-authors: Martin Mirchev, Marcel Böhme, Abhik Roychoudhury

The Network and Distributed System Security Symposium (NDSS) 2024



Large Language Model guided Protocol Fuzzing

Testing Protocol Implementations

2

Protocol implementations are stateful reactive systems

➢To expose a vulnerability, send the right messages in the right order 

➢Message structures and orders are often specified in RFCs

RTSP State Machine
Play Message Structure



Large Language Model guided Protocol Fuzzing

Challenges in Protocol Fuzzing

3

Generator-based Fuzzing:

Generate random message sequences 

from scratch based on the machine-

readable information about the 

protocol

Mutation-based Fuzzing 

(more widely-used):

Use a set of pre-recorded message 

sequences as seed inputs for mutation

➢ Much manual effort involved

• Some specification missed

• Tedious and error-prone

Several Challenges: 

(C1) Dependence on initial seeds

(C2) Unknown message structure

(C3) Unknown state space

We try to leverage LLMs to resolve these challenges!!



Large Language Model guided Protocol Fuzzing

Linkage to Large Language Models

The capabilities of LLMs have various implications for protocol fuzzing:

➢Network protocols are implemented in accordance with RFCs

• RFCs are written in natural language and often public available,

so LLMs should be able to understand RFCs

➢Messages are in text format transmitted between servers and clients

• LLMs have strong text-generation capabilities

➢Fuzzing is highly automatic and easy-to-use

• Integrating LLMs into fuzzing can still keep these features

4

Do LLMs really have the capabilities to 

resolve challenges in protocol fuzzing?



Large Language Model guided Protocol Fuzzing

Case Study

Study the RTSP protocol with Live555

(C1) Enriching Seed Corpus:

About 80% messages generated are correct

(C2) Lifting Message Grammars: 

All message grammars are identical to the ground truth

(C3) Inducing Interesting State Transitions:

Of the LLM-generated client requests, 69% to 89% induced a transition to a 

different state, covering all state transitions for each individual state

5



Large Language Model guided Protocol Fuzzing

LLM-guided Protocol Fuzzing

6

(C1) Dependence on 

initial seeds:

• Enriching Initial Seeds

(C2) Unknown message 

structure:

• Grammar-guided Mutation(C3) Unknown state space:

• Inferring state space and 

surpassing Coverage 

Plateau



Large Language Model guided Protocol Fuzzing

Evaluation

7

Research Questions

RQ.1 State coverage. How much more state coverage does ChatAFL achieve compared to baselines?

RQ.2 Code coverage. How much more code coverage does ChatAFL achieve compared to baselines?

RQ.3 New bugs. Is ChatAFL useful in discovering previously unknown bugs?

Subject Programs

• Live555 • Kamailio

• ProFTPD • Exim

• PureFTPD • Forked-daapd

Comparisons

• AFLNet

• NSFuzz

Our tool ChatAFL and dataset 

are publicly available at:

https://github.com/Ch

atAFLndss/ChatAFL

https://github.com/ChatAFLndss/ChatAFL
https://github.com/ChatAFLndss/ChatAFL


Large Language Model guided Protocol Fuzzing

State Space Coverage

8

Achieve same transition 

number 48.12× and 15.94×

faster, respectively

Cover 29.55% and 25.75%

more states, respectively



Large Language Model guided Protocol Fuzzing

Code Coverage

9

Achieve same branch number 6.14×

and 10.18× faster, respectively



Large Language Model guided Protocol Fuzzing

Discovering New Bugs

10

CVSS Severity Score: 

9.8 Critical

CVSS Severity Score: 

7.5 High



Large Language Model guided Protocol Fuzzing

Summary

11

Thanks!!


	Slide 1: Large Language Model guided Protocol Fuzzing
	Slide 2: Testing Protocol Implementations
	Slide 3: Challenges in Protocol Fuzzing
	Slide 4: Linkage to Large Language Models
	Slide 5: Case Study
	Slide 6: LLM-guided Protocol Fuzzing
	Slide 7: Evaluation
	Slide 8: State Space Coverage
	Slide 9: Code Coverage
	Slide 10: Discovering New Bugs
	Slide 11: Summary

