
Large Language Model Powered Symbolic Execution

YIHE LI, National University of Singapore, Singapore
RUIJIE MENG

∗
, National University of Singapore, Singapore

GREGORY J. DUCK, National University of Singapore, Singapore

Large Language Models (LLMs) have emerged as a promising alternative to traditional static program analysis
methods, such as symbolic execution, offering the ability to reason over code directly without relying on
theorem provers or SMT solvers. However, LLMs are also inherently approximate by nature, and therefore
face significant challenges in relation to the accuracy and scale of analysis in real-world applications. Such
issues often necessitate the use of larger LLMs with higher token limits, but this requires enterprise-grade
hardware (GPUs) and thus limits accessibility for many users. In this paper, we propose LLM-based symbolic
execution—a novel approach that enhances LLM inference via a path-based decomposition of the program
analysis tasks into smaller (more tractable) subtasks. The core idea is to generalize path constraints using a
generic code-based representation that the LLM can directly reason over, and without translation into another
(less-expressive) formal language. We implement our approach in the form of AutoBug, an LLM-based
symbolic execution engine that is lightweight and language-agnostic, making it a practical tool for analyzing
code that is challenging for traditional approaches. We show that AutoBug can improve both the accuracy and
scale of LLM-based program analysis, especially for smaller LLMs that can run on consumer-grade hardware.
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1 Introduction
Program analysis is a foundational discipline in computer science that aims to understand program
behavior through various systematic techniques. Traditional forms of program analysis include static
methods—such as symbolic execution [40], abstract interpretation [19, 20], and model checking [17]—
that analyze the program without executing it, as well as dynamic methods—such as fuzzing [51,
77], concolic execution [30, 62], instrumentation [53, 63], and profiling [32]—that analyze program
behavior based on observations of actual executions. In general, program analysis has many
applications, such as program testing [11, 18, 30, 31, 34, 56, 58, 62, 72, 80], debugging [2, 25, 76],
verification [28, 35], repair [43, 46], reverse engineering [52], and vulnerability detection [39].
A recent alternative to traditional program analysis methods has emerged in the form of Large
Language Models (LLMs) [10, 14, 45, 54, 67]. Here, LLMs can make inferences over code directly
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with properties expressed in code or natural language and have become powerful enough to
handle many traditional program analysis applications. As such, many LLM-based testing [15, 50],
debugging [47], and repair [74, 78, 79] tools have recently emerged.

We contrast traditional program analysis (symbolic execution) with LLM-based program analysis.
Here, symbolic execution is a static program analysis method based on the idea of executing a
program with symbolic inputs/values, typically represented as logical formulae over some under-
lying theories (e.g., linear arithmetic, bit vectors, and arrays). Symbolic execution systematically
transforms these symbolic values (a.k.a. the symbolic state) based on the program’s statements,
effectively executing multiple concrete paths simultaneously. These symbolic states can then be
used for various analysis tasks, such as verifying the truth of an assertion or generating test cases,
using deductive inference with the help of some underlying theorem prover or SMT solver [21]. In
contrast, LLM-based program analysis involves engineering a prompt (or sequence of prompts) that
queries an LLM as an oracle. A typical prompt consists of the relevant code (or code fragments), as
well as instructions explaining the analysis task expressed in natural language. The LLM effectively
uses a form of approximate inference (based on the training data) to solve the task, rather than
the strict deductive inference used by a theorem prover. As such, LLM-based program analysis is
typically ad hoc and tailored to specific tasks rather than general and principled.
Both traditional and LLM-based program analysis face significant challenges in practice. For

example, traditional symbolic execution has several well-known limitations [6, 12], such as the
handling of unbounded loops, the handling of external environment/libraries, and the handling
of memory/heap-manipulating programs—all of which are common-place in real-world code. We
consider how KLEE [11], a prominent symbolic execution engine, treats each iteration of a loop as
a separate path, leading to non-termination for unbounded loops (e.g., while(𝑖 < input) {...}). In
contrast, LLMs have the ability to directly reason over loops, environment, and heaps, avoiding
problems such as non-termination. That said, LLMs face other challenges, such as scalability (e.g.,
the 8192 token limit for GPT-4 [10]) and accuracy [27, 44] due to approximate reasoning. Recent
studies also correlate the accuracy of LLMs with prompt size [44], meaning that more concise and
targeted prompts generally perform better.
In this paper, our aim is to improve the accuracy and scale of LLM-based program analysis.

Our first main insight is that the strengths/weaknesses of traditional and LLM-based program
analysis are complementary, meaning that a hybrid design can help address the limitations of
either approach. To this end, we propose combining the path-based decomposition of symbolic
execution with approximate inference via an LLM—a.k.a. LLM-based symbolic execution. The core
idea is a principled decomposition of the original program analysis task into smaller subtasks
based on paths in the original program—helping to mitigate some of the scalability and accuracy
concerns with LLMs. Our second main insight is that since LLMs are primarily trained on code, the
representation of symbolic states should also be in terms of code rather than logical formulae. To
this end, we propose a generic path constraint representation of the form of a strongest post-condition
(sp) predicate transformer [23] over sub-programs derived from the original program, where each
sub-program represents a path. Since we represent path constraints as ordinary code, we can use
an LLM prompting directly, disposing of any verification conditions (VCs) generated by the symbolic
execution process. Our approach also avoids many of the limitations associated with the translation
of paths into formulae for a theorem prover (e.g., environment and heaps). Our final insight is that
our path constraint representation can be generalized into sets of paths (e.g., all iterations of an
unbounded loop), ensuring that LLM-based symbolic execution will always terminate.

We study LLM-based symbolic execution in both theory and practice. We show that LLM-based
symbolic execution mitigates many of the limitations of both traditional and LLM-based program
analysis. We have implemented our approach in the form of AutoBug—an automated LLM-based
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symbolic execution engine. AutoBug uses a path-based decomposition of a program analysis task
into smaller (more tractable) subtasks that are suitable for LLM inference. Based on the observation
that LLMs are inherently approximate oracles, we propose a lightweight design of AutoBug that
is language agnostic and does not rely on any heavyweight compiler infrastructure. AutoBug
is designed to be a practical program analysis tool that can be applied to code that is difficult to
analyze with traditional methods. In summary, the main contributions of this paper are:
• We introduce the concept of LLM-based symbolic execution—a symbolic execution methodology
using LLMs for direct reasoning over the original programming language (e.g., C/Java/Python),
rather than indirect reasoning via translation into some formal theorem prover language.We show
that our approach avoids many well-known limitations of traditional symbolic execution, such
as unbounded loops, external environment, heap manipulation, etc. Furthermore, our approach
uses a path-based decomposition of program analysis tasks into more concise LLM prompts,
improving the accuracy and scalability of LLM inference.
• We implement our approach in the form of AutoBug—a lightweight LLM-based symbolic
execution engine that supports multiple programming languages without relying on heavyweight
compiler infrastructure.
• We evaluate AutoBug against various program analysis tasks for C/Python/Java code. We show
that AutoBug improves both accuracy and scale, especially for smaller models that can run on
consumer-grade hardware.

2 Motivation
2.1 Background
2.1.1 Symbolic Execution. Symbolic execution [6, 40] is an established program analysis methodol-
ogy based on running the program with symbolic values representing sets of concrete inputs (rather
than a single concrete input for normal execution). For each symbolic input, symbolic execution
will systematically explore multiple execution paths of the program, allowing for applications such
as error detection, verifying correctness, or finding vulnerabilities.
Symbolic execution works with symbolic states that are traditionally represented as a set of

variables (e.g., x and y) subject to a path constraint (e.g., x < y). The symbolic state represents the
set of concrete states (e.g., {(x, y) | x < y}) that is reachable from some symbolic input. Symbolic
execution can be defined in terms of operations over symbolic states, e.g., symbolic execution over
C-style increment statement (x++) can be represented as the Hoare triple [35]:

{P} x++ {∃𝑧 : x = 𝑧 + 1 ∧ P[x ↦→ 𝑧]}

Given a pre-condition (P), the triple describes the resulting post-condition after the execution of the
increment operation. For example, given a path constraint 𝜋pre = (x < y), then the path constraint
after the operation will be 𝜋post = (∃𝑧 : x = 𝑧 + 1 ∧ 𝑧 < y), or equivalently, 𝜋post = (x ≤ y).
Conditional statements (e.g., if 𝑐 then 𝑇 else 𝐸 end) are typically handled by forking the path
constraint (𝜋pre) into separate 𝜋then = (𝜋pre ∧ 𝑐) and 𝜋else = (𝜋pre ∧ ¬𝑐) constraints, and then
continuing execution along the individual then- and else-branches. A similar strategy is used for
loops (e.g., while 𝑐 do 𝐵 done). Finally, for each path through the program, a final path constraint
𝜋 will be generated. This can be used to prove properties over the path, such as whether a final
post-condition (Q) holds, i.e., whether the verification condition (VC) of the form (𝜋 |= Q) holds
or not. Such VCs are discharged with the help of theorem provers, such as SMT solvers [21]. By
executing sets of concrete inputs at once, symbolic execution aims to exhaustively explore the
space of program behaviors—something that cannot be achieved by concrete execution alone.
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Example 2.1. Consider the simple program (if x > y then z := x + 2 else z := x ∗ y end) and the
post-condition Q = (z > y). Then the following VC will be generated for the else-path:

¬(x > y) ∧ z = x × y |= z > y (VC-Else)

A theorem prover shows that (VC-Else) is unsatisfiable, meaning that (Q) does not hold for all
executions of the program. □

2.1.2 Large Language Models. The emergence of Large Language Models (LLMs) [10, 14, 45, 54,
67] presents a new alternative for reasoning over program code. Trained on extensive datasets,
including millions of lines of real-world code written in multiple languages, LLMs can reason
over C/Java/Python/etc. code directly, including many traditional program analysis tasks, such as
testing [15, 50], debugging [47], and repair [74, 78, 79]. For example, instead of relying on symbolic
execution, LLMs can reason over code using a suitable prompt expressed in natural language, such
as “there is a bug present in the following Python code segment, please suggest the possible root causes
of the bug and corresponding fixes”. Most modern LLMs can analyze the code and generate possible
suggestions and patches automatically, based on the understanding of code and defects present in
the training set.
Unlike traditional program analysis methods, LLMs do not aim to be perfectly precise. Rather,

LLMs can be thought of as approximate oracles that are sometimes incomplete or give the wrong
answer. This is because LLMs fundamentally rely on learned patterns and approximate reasoning,
rather than classical deductive reasoning used by traditional theorem provers. Despite the difference,
LLMs are clearly useful, with an explosion of applications for real-world analysis problems.

2.2 Limitations of Symbolic Execution
While symbolic execution has many applications (e.g., bug detection, security analysis, debugging,
and program repair), it also has well-known limitations, as we briefly summarize below:

2.2.1 Limitation: Handling Loops (and Recursion). Unbounded loops (and recursion) are a known
problem for symbolic execution. Here, symbolic state forking (Section 2.1.1) can treat each loop
iteration {0, 1, 2, ...} as a new path, potentially leading to infinite unrolling if the loop is not bounded.
Popular symbolic execution tools, such as KLEE [11], handle this problem using a concrete iteration
bound—replacing potentially infinite exploration with a bounded, but incomplete, exploration.

An alternative is to use loop invariants. If known, the invariant allows symbolic execution to pass
over a loop without explicit unrolling. Loop invariants can be manually provided, or discovered
automatically, such as using abstract interpretation [19] over some known domain, constraint based
(CBMC [29]), or machine learning (Code2Inv [65]). However, loop invariant discovery may only
work for simple loops, and the general case is either computationally hard or undecidable.

2.2.2 Limitation: Handling External Environment. Another known problem is the handling of
external functions (e.g., calls to third-party libraries without source code) and/or external inputs (e.g.,
recv from a socket), collectively the external environment. Since the underlying symbolic-execution
theorem prover uses deductive reasoning, a precise specification of all external operations and/or
inputs is usually required. As such, the environment is usually handled through a combination of
stubs, modeling, or concretization. For example, the user can manually model an external function
call by implementing a replacement stub function that specifies the necessary specification using
klee_assume(). However, this approach is manual, and modeling arbitrary code or inputs can
require significant effort, meaning that the approach tends to rarely scale.
Another approach is concretization, where the symbolic execution algorithm assigns concrete

values to some symbolic variables, allowing external functions to be executed with these values.
However, concretization can also lead to an incomplete exploration of program behavior.
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(a) original program

#define SIZE 100
typedef struct NODE {

const char *key , *val;
struct NODE *next;

} NODE;
NODE *db = NULL;
pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void handle_client(int s) {
char buf[SIZE], rep[SIZE];
while (true) {

ssize_t r = recv(s, buf , SIZE -1, 0);
if (r <= 0) break;
buf[r] = '\0';
char cmd[SIZE] = {0}, key[SIZE], val[SIZE];
sscanf(buf , "%s %s %s", cmd , key , val);
if (strcmp(cmd , "GET") == 0) {

snprintf(rep , SIZE , "ERROR\n");
NODE *n, *p = NULL;
pthread_mutex_lock (&mutx);
for (n = db; n != NULL; p = n, n = n->next) {

if (strcmp(n->key , key) != 0)
continue;

if (p != NULL) p->next = n->next;
else db = n->next;

}
pthread_mutex_unlock (&mutx);
if (n != NULL) {

snprintf(rep , SIZE , "%s\n", n->val);
free(n->key); free(n->val); free(n);

} else
snprintf(rep , SIZE , "ERROR\n");

} else if (strcmp(cmd , "PUT") == 0) {
NODE *n = (NODE *) malloc(sizeof(NODE));
pthread_mutex_lock (&mutx);
n->key = strdup(key);
n->val = strdup(val);
n->next = db; db = n;
pthread_mutex_unlock (&mutx);
snprintf(rep , SIZE , "OK\n");

} else
snprintf(rep , SIZE , "ERROR\n");

send(s, rep , strlen(rep), 0);
}
close(s);

}

(b) slice for “mutx is unlocked”

pthread_mutex_t mutx = PTHREAD_MUTEX_INITIALIZER;

void handle_client(int s) {
while (true) {

if (...) break;
if (...) {

pthread_mutex_lock (&mutx);
pthread_mutex_unlock (&mutx);

} else {
pthread_mutex_lock (&mutx);
pthread_mutex_unlock (&mutx);

}
}

}

(c) slice for “db->key ≠ NULL”

#define SIZE 100
typedef struct NODE {

const char *key;
} NODE;
NODE *db = NULL;

void handle_client(int s) {
char buf[SIZE];
while (true) {

ssize_t r = recv(s, buf , SIZE -1, 0);
if (...) break;
buf[r] = '\0';
char cmd[SIZE] = {0}, key[SIZE], val[SIZE];
sscanf(buf , "%s %s %s", cmd , key , val);
if (...) {

NODE *n = (NODE *) malloc(sizeof(NODE));
n->key = strdup(key);
db = n;

}
}

}

Fig. 1. An example program (a) that implements a simple key-value server. The example program includes

an unbounded loop (while (true) ...), interaction with the external environment (recv/send), and heap-

manipulating data structures (NODE). In addition, slices (b) and (c) corresponds to the post-conditions “mutx
is unlocked” (always holds) and “db->key ≠ NULL” (may not hold) respectively.

2.2.3 Limitation: Heap Manipulating Programs. Traditional theorem provers and SMT solvers
tend to have limited support for reasoning over (mutable) data structures with complex structural
invariants, such as singly- and doubly-linked lists, binary trees, red-black trees, and DAGs. By
extension, traditional symbolic execution tools inherit these limitations. Some tools are based on
Separation Logic [59], which does support reasoning over heap-manipulating programs, as used
by VeriFast [36] and Infer [24]. However, VeriFast is manual and annotation-heavy, and Infer uses
heuristics to infer common structural invariants, such as linked lists, but not arbitrary heap shapes.

Discussion. Figure 1 (a) is an example of a program that exhibits all three limitations, including
unbounded loops (while (true) ...), interaction with the external environment (recv/send),
and is a heap manipulating program (NODE). Although this program is relatively simple, it still
presents a significant challenge for traditional symbolic execution tools such as KLEE.
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2.3 Limitations of LLMs
LLMs are trained on a huge corpus of data, and do not necessarily have the same limitations as
symbolic execution. For example, an LLM can reason over Figure 1 (a), and can answer queries
about the program. That said, LLMs also have known limitations, as summarized below:

2.3.1 Limitation: Scale. LLMs typically have a limited ability to reason over large and complex
code bases. For example, the token limit imposes a maximum number of tokens for the given input
(and output), and a medium-to-large code base can easily exceed this limit.

2.3.2 Limitation: Approximate Oracles. LLMs rely on approximate reasoning, i.e., answers based
on statistical patterns and heuristic generalization, rather than the formal deductive reasoning of
traditional theorem provers. Even if the token limit (2.3.1) is not exceeded, studies have shown that
LLMs generally performworse with overly verbose prompts that include irrelevant information [44].

Discussion. Although scale and accuracy are concerns, LLMs can typically handle more classes of
programs than traditional analysis methods, such as symbolic execution. Furthermore, the relative
completeness of LLMs, in the absence of precise specifications, means that LLMs can be easily
applied to a wide range of applications. The completeness/applicability can often be of greater
pragmatic interest than perfect accuracy, and this is one reason behind the explosion of real-world
applications.

2.4 Our Approach
Many limitations of traditional symbolic execution stem from those of the underlying theorem
prover. Specifically, existing theorem provers and SMT solvers only accept queries in some for-
mal input language, with limited expressiveness compared to the original source language (e.g.,
C/Java/Python). For example, an SMT solver will only accept queries in the form of a Boolean
formula over a given set of theories (T), such as linear inequalities, bit vectors, or arrays. In contrast,
the C programming language is significantly more expressive, with complex control-flow (loops),
memory, pointers, library calls, data structures, environmental interactions, etc. The discrepancy in
the expressiveness complicates the translation from the high-level programming language into
the solver input language—such as “unrolling” loops into flat, quantifier-free formulas—and such
translation may also be incomplete (e.g., unbounded loops). Furthermore, the SMT solver may not
support the necessary theories for reasoning over complex programs, such as heap-manipulating
data structures and external environment interactions.

Our underlying approach is to use the path-based decomposition of symbolic execution, but to
replace the traditional theorem prover with an LLM. The key advantage of LLMs is that they can
reason over the source code directly—eliminating the need for translation into a less expressive solver
input language and the associated limitations. Instead, our approach represents the path constraint
as a generic strongest post-condition sp(𝑆,P) predicate transformer [23] over a pre-condition P,
and a derived sub-program 𝑆 which represents a path or set of paths. Our key insight is that LLMs
can reason over sp-constraints directly, since 𝑆 is just ordinary source code, without the need for
“translation”. Essentially, we can view the LLM as an effective solver for untranslated sp-constraints
“as-is”. We demonstrate this concept with a simple example.

Example 2.2 (Simple). Consider the simple program (if x > y then z := x + 2 else z := x ∗ y end)
and post-condition Q = (z > y) once more (see Example 2.1). Then the path constraint for the
else-branch can be represented as a formula (𝜑) or a sub-program (𝑆), as follows:

Formula (𝜑) Strongest Post-Condition over a Sub-program (𝑆)
¬(x > y) ∧ z = x × y sp(𝑆, true) where 𝑆 = {assume(x ≤ y); z := x ∗ y}
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The key idea is that both (𝜑) and sp(𝑆, true) are equivalent representations of the same path
constraint—i.e., one can be derived from the other under the definition of the language semantics
(sp). While the formula is suitable for a theorem prover, the sub-program is suitable for an LLM:

“Given {assume(x ≤ y); z := x ∗ y}, does the post-condition z > y always hold?” (VC-Else-2)

The LLM determines the VC does not hold, e.g., the following GPT4 [10] output (emphasis original):
“The post-condition z > y does not always hold. A simple counterexample is when
x = 1, where z = y instead of z > y. Hence, the claim is false.” □

Our approach is to enumerate all sub-programs based on a partitioning of paths through the
original program. Here, each sub-program is algorithmically derived from the original code, and
contains all statements that (1) are visited by any path from the partition, and (2) of which post-
condition Q is data- or control-flow dependent. Like traditional symbolic execution, our approach is
a path-based decomposition of the original program analysis problem into smaller (more tractable)
sub-problems. This decomposition helps to address some of the limitations of direct LLM-based
reasoning (Section 2.3), such as scale and accuracy. Furthermore, since our approach uses an LLM, it
avoids many of the limitations of traditional symbolic execution (Section 2.2) caused by translation.
We summarize the benefits as follows:
▷ Handling Loops (and Recursion). Our approach avoids translation of (unbounded) into a less

expressive language, and loops/recursion can be represented “as-is” in the derived sub-program(s).
Similarly, our approach does not need explicit loop invariant recovery or annotation, as LLMs
are capable of reasoning over loops without any special intervention.

▷ Handling External Environment. Rather than manual modeling or concretization, our approach is
to use the LLM to infer the likely behavior of the environment or external function call. Since
LLMs are trained on a huge corpus of real-world code, they have significant exposure to common
libraries, file formats, protocols, etc. Furthermore, even if the external environment is novel,
LLMs can still infer the most likely behavior based on clues from the context (function names,
variable names, code comments, placement within the algorithm, etc.), as a form of abductive
reasoning, or inference to the best explanation, without the need for explicit modeling.

▷ Heap Manipulating Programs. LLMs can directly interpret heap-manipulating programs without
the need for any special logical framework. LLMs can also (abductively) infer the (likely) structural
invariants based on direct interpretation of the code, without explicit annotation.

▷ Scale. Like traditional symbolic execution, our approach decomposes program analysis problems
into smaller (tractable) sub-problems, helping to avoid any hard or soft limit of the LLM. This
allows our approach to scale to large/complex programs and analysis problems.

▷ Approximate Oracles. Studies [44] show that LLMs perform better with more targeted and concise
prompts. By decomposing program analysis problems into sub-problems that capture only the
relevant parts of the original (possibly large) code base, we help to focus the LLM and improve
the overall accuracy of the analysis.

The decomposition and lack of translation mean that our approach can handle programs that are
difficult for traditional program analysis. We illustrate with an example.

Example 2.3 (LLM-based Symbolic Execution). Consider the Figure 1 (a) program that cannot easily
be handled by traditional symbolic execution methods (Section 2.2), and a simple program analysis
problem that verifies each lock(&mutx) operation is paired with an unlock(&mutx) operation.
Furthermore, assume that (for the sake of example) the (a) program is too complex for an LLM to
handle directly (Section 2.3).1 We can express this as a natural language pre- and post-condition (P
1This is not necessarily true, but is an assumption for the sake of an example that can fit within the page limit.
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and Q respectively) that “mutx is unlocked”. Then Figure 1 (b) is an example of a derived sub-program
that acts as a substitute for the original program with respect to P and Q. We have that:

sp((b),P) ̸|= Q ⇒ sp((a),P) ̸|= Q
Thus, to refute Q for (a), it is sufficient to refute Q for (b). Furthermore, program (b) is targeted to
the specific program analysis task (that mutx is unlocked), and is ∼80% smaller in token count (419
vs 81). The LLM determines the post-condition holds for (b).

Another example is Figure 1 (c) and the post-condition (db->key ≠ NULL). Assuming the same
condition initially holds, then (c) is ∼64% smaller (419 vs 149 tokens). The LLM determines the
post-condition does not hold for (c) since strdup() may return NULL. □

Input: A Hoare triple {P}𝐶 {Q}
Output: HOLDS or a counterexample 𝑆

1 Function LLMSymExe({P}𝐶 {Q}):
2 AST ← Parse(𝐶)

3 CFG ← GenCFG(AST)
4 partitions← GenPartitions(CFG)
5 for Π ∈ partitions do
6 𝑆 ← GenSubProg(P,Π, Q)
7 prompt ← "assuming P" ++
8 Render(𝑆,AST) ++
9 "does Q hold?"

10 result ← LLM(prompt)
11 if result = FALSE then return 𝑆

12 return HOLDS

Algorithm 1: LLM-based Symbolic Execution

Algorithm. An overview of our LLM-based
symbolic execution algorithm is summarized
in Algorithm 1. Here, the algorithm’s fron-
tend is similar to that of a standard com-
piler, and parses the program into an Ab-
stract Syntax Tree (AST, line 2), and then gen-
erates a Control Flow Graph (CFG, line 3).
Next, the algorithm generates a representa-
tion of the set of all paths through the CFG
(line 4). Here, the set of all paths is repre-
sented as a set of path partitions such that
(paths = Π1 ∪ ... ∪ Π𝑛), where each partition
Π𝑖 represents some (possibly infinite) subset
of paths. One challenge is how to generate
a good set of partitioning (to be discussed
in Section 3). Next, for each partition Π, the
algorithm generates a derived sub-program
𝑆 that generalizes the partition (line 6). For example, Figure 1 (b) and (c) are possible derived
sub-programs of Figure 1 (a). Each sub-program 𝑆 is used to construct a corresponding prompt
(line 7), including rendering the 𝑆 back into a text-based source-code representation (line 8). The
prompt (line 7) is a natural language representation of the Hoare triple {P}𝑆{Q}, which holds
iff sp(𝑆,P) |= Q. Finally, the prompt is sent to the LLM for inference (line 10). Algorithm 1 can
either establish or refute the post-condition, subject to the reasoning capabilities of the underlying
LLM. Assuming that the partitions are ordered based on slice, Algorithm 1 will return the least
sub-program 𝑆 that is deemed to refute the post-condition. Otherwise, if no such refutation is found,
Algorithm 1 deems that the triple holds (HOLDS).

Summary. Like traditional symbolic execution, LLM-based symbolic execution (Algorithm 1) rep-
resents a path-based decomposition the original program analysis task into smaller subtasks. A
summary of the main similarities and differences is shown in Table 1. The substitution of a theorem
prover with an LLM changes to various aspects of the design, capabilities, and implementation of
the symbolic execution engine. For example, LLMs use approximate and abductive reasoning, or
rely on information learned during the training process, meaning that LLMs do not need precise
specifications or environment modeling. Likewise, the lack of translation into some (less expressive)
formal language allows the LLM to reason over loops or heap manipulation “as-is”, without relying
on loop/data-structure invariant discovery.
In this paper, we study the concept of program analysis via LLM-based symbolic execution.

First, we study the principles of LLM-based symbolic execution in terms of the idealized procedural
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Table 1. Summary of main similarities and differences between traditional and LLM-based symbolic execution.

Here (Cap = Capabilities), (Imp = Implementation), (sp = strongest post-condition), and ( the key differences ).

Property Tradition Symbolic Execution LLM-based Symbolic Execution

D
es
ig
n

Overall method Decomposition & solving path constraints Decomposition & solving path constraints
Decomposition method Decomposition into a formal language Decomposition into sub-programs
Reasoning engine Theorem prover or SMT solver Large Language Model (LLM)
Reasoning method Deductive Approximate, deductive, abductive
Path representation Formal language (unfolded sp-path constraints) Untranslated sp-constraints over truncated slices
Specification language Formal language Either formal, code, or natural language

C
ap
.

Weaknesses Loops, environment, heaps Complex integer, linear, Boolean reasoning
Unbounded loops Infinite unfolding or loop invariants LLM reasons over loops “as-is”
Environment Manual modeling/specifications required LLM abductive reasoning or training data
Heap manipulation Manual annotation + Separation Logic LLM reasons over heaps “as-is”

Im
p. Programming languages Language specific (C+KLEE [11] and Java+SPF [57]) Programming language agnostic

Compiler infrastructure Close integration (LLVM [42]+KLEE, etc.) Lightweight (AST-level) implementation

programming language used by Hoare logic [35]. We show that program analysis tasks can be
decomposed into tasks over derived sub-programs representing paths, or sets of paths (truncated
slices), through the original program. Furthermore, we also show that only a finite number of
partitions (Algorithm 1, line 4) needs to be considered, ensuring that LLM-based symbolic execution
will always terminate—even for unbounded loops.

In addition, we study the application of LLM-based symbolic execution in practice. For this, we
design AutoBug—an LLM-based symbolic execution engine for real-world programming languages
such as C/Java/Python. Our approach is based on the observation that Algorithm 1 is mostly
language agnostic except for specific aspects, such as the parser. This means our approach can be
readily ported to other programming languages. Furthermore, we also observe that, since LLMs
are fundamentally approximate, we can build a lightweight implementation that uses approximate
parsing and dependency analysis—without relying on any heavyweight and/or language-specific
compiler framework.

3 Principles of LLM-based Symbolic Execution
Our goal is to adapt traditional symbolic execution methods to LLMs that reason over code directly,
rather than translation into a (less expressive) theorem prover input language.

3.1 Symbolic Execution Foundations
We use the minimal imperative language defined by Hoare logic [35] augmented with an explicit
assume-statement.2 We define the language syntax as follows:

𝐶 ::= skip | 𝐶;𝐶 | assume(𝐵) | 𝑥 := 𝐸 | if 𝐵 then 𝐶 else 𝐶 end | while 𝐵 do 𝐶 done

Where 𝐸 represents some base language (e.g., arithmetic expressions) and 𝐵 represents Boolean
expressions over 𝐸. We also use 𝜖 to sometimes represent an empty program (equivalent to skip).
The language semantics are defined inductively (i.e., least relation) in terms of the strongest post-
condition (sp) relation defined as follows:

sp(skip,P) = P sp({𝐶1;𝐶2},P) = sp(𝐶2, sp(𝐶1,P)) sp(assume(𝑏),P) = 𝑏 ∧ P
sp(𝑥 := 𝑒,P) = ∃𝑦 : 𝑥 = 𝑒 [𝑥 ↦→ 𝑦] ∧ P[𝑥 ↦→ 𝑦]

sp(if 𝑏 then 𝐶1 else 𝐶2 end,P) = sp(𝐶1, 𝑏 ∧ P) ∨ sp(𝐶2,¬𝑏 ∧ P)
sp(while 𝑏 do 𝐶 done,P) = sp(𝐶;while 𝑏 do 𝐶 done, 𝑏 ∧ P) ∨ (¬𝑏 ∧ P)

2Note assume(𝐵) can be emulated as (while ¬𝐵 do skip done) under partial correctness, but is treated as a special case.
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We define a linear program to be any program comprising only skip-, assume-, and assignment-
statements (without conditionals or loops). We define a path to be a linear program that is derived
by unfolding the original program 𝐶 using the following rules:

unfold (skip, 𝜋) = {𝜋 ; skip} unfold (assume(𝑏), 𝜋) = {𝜋 ; assume(𝑏)} unfold (𝑥 := 𝑒, 𝜋) = {𝜋 ;𝑥 := 𝑒}
unfold ({𝐶1;𝐶2}, 𝜋) = ∪{unfold (𝐶2, 𝜋

′) | 𝜋 ′ ∈ unfold (𝐶1, 𝜋)}

unfold (if 𝑏 then 𝐶1 else 𝐶2 end, 𝜋) = ∪
{
unfold (𝐶1, {𝜋 ; assume(𝑏)})
unfold (𝐶2, {𝜋 ; assume(¬𝑏)})

unfold (while 𝑏 do 𝐶 done, 𝜋) = ∪
{
unfold ({𝐶;while 𝑏 do 𝐶 done}, {𝜋 ; assume(𝑏)})
{𝜋 ; assume(¬𝑏)}

We abstractly define symbolic execution to be any algorithm that combines path unfolding with
Verification Condition (VC) solving. Given a program analysis task represented as a Hoare [35] triple
{P}𝐶{Q}, then a symbolic execution algorithm:
(1) exhaustively generates the set of all paths = unfold (𝐶, 𝜖) through the program; and
(2) solves each corresponding VC (sp(path,P) |= Q) for each path ∈ paths.
That is, a symbolic execution algorithm computes the following using explicit enumeration:

{P}𝐶{Q} iff
∧
{sp(𝜋,P) |= Q | 𝜋 ∈ unfold (𝐶, 𝜖)} (SymExe)

The triple is deemed to hold if each individual VC holds for the corresponding path (𝜋 ), and to not
hold otherwise. Here, each sp(𝜋,P) is defined to be the path condition for the corresponding path
𝜋 . Essentially, a symbolic execution algorithm decomposes the original program analysis task into
simpler subtasks that can be solved separately.

3.1.1 Traditional Symbolic Execution. “Traditional” symbolic execution algorithms solve each VC
using a suitable theorem prover, such as an SMT solver [21]. To do so, the sp-constraints for each
path are translated into a logical formula 𝜑 over the domain of 𝐸, by applying the (linear program
subset of the) sp-rules defined above. The translated VC (𝜑 |= Q) is then solved using a theorem
prover. Note that the translation is necessary since traditional theorem provers are limited to a
specific input language (e.g., SMT-LIB), and cannot make inferences over an abstract sp-constraint
directly. In addition, most practical symbolic execution tools implement several optimizations,
including incremental path unfolding, incremental sp-translation, pruning infeasible paths, and the
merging of similar paths. For example, rather than pre-computing the set of paths upfront, most
practical implementations maintain a symbolic state comprising a current location, a (partially
constructed) path constraint/condition, and a set of current variables-of-interest. Such optimizations
are consistent with abstract symbolic execution (SymExe) defined above.
We can also understand the limitations of Section 2.2. Firstly, the number of paths in the set

unfold (𝐶, 𝜖) may be very large (exponential) or even infinite (unbounded loops, Section 2.2.1). This
is known as the path explosion problem, and is a well-known limitation of symbolic execution
methods. Secondly, the sp-translation will be limited for programs that contain operations that
are not supported—such as common interactions with the external environment (Section 2.2.2).
Finally, the underlying theorem prover itself may be limited. For example, KLEE [11] uses the Z3 [6]
SMT solver over the domain of linear arithmetic, arrays, and bit-vectors by default. However, this
configuration does not support reasoning over heap-manipulating programs (Section 2.2.3).

3.2 LLM-based Symbolic Execution (Path-based)
The basic idea behind “LLM-based” symbolic execution is to use a Large Language Model (LLM)
as the underlying reasoning engine instead of a theorem prover. Thus, given a VC of the form
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(a) simple program (𝐶simple) (b) path (𝜋simple) (c) truncation (𝑇simple)

1 i := 1;
2 while i ≤ n do
3 read(x) ;
4 if x < 0 then
5 xs.delete (−x) ;
6 else
7 xs.insert (x) ;
8 z := xs.size ( ) ;
9 write(z) ;

10 i := i + 1;

1 i := 1;
2 assume(i ≤ n) ;
3 read(x) ;
4 assume(¬(x < 0) ) ;
5 xs.insert (x) ;
6 z := xs.size ( ) ;
7 write(z) ;
8 i := i + 1;
9 assume(i ≤ n) ;

10 read(x) ;
11 assume(¬(x < 0) ) ;
12 xs.insert (x) ;
13 z := xs.size ( ) ;
14 write(z) ;
15 i := i + 1;
16 assume(¬(i ≤ n) ) ;

1 i := 1;
2 while i ≤ n do
3 read(x) ;
4 assume(¬(x < 0) ) ;
5 xs.insert (x) ;
6 z := xs.size ( ) ;
7 write(z) ;
8 i := i + 1;

(d) slice (𝑆base )
1 i := 1;
2 while i ≤ n do
3 read(x) ;
4 xs.insert (x) ;
5 i := i + 1;

Fig. 2. (a) A simple example program (𝐶simple), (b) one example path (𝜋simple) through (𝐶simple), (c) a truncation

(𝑇simple) of (𝐶simple) assuming only the inner 𝑡ℎ𝑒𝑛-branch is taken, and (d) a slice (𝑆simple) of (𝑇simple) assuming

{n, xs} are the vars-of-interest.

(sp(𝜋,P) |= Q), we can use the LLM to reason directly over the path constraint and post-condition
Q. This is possible since, through its training process, the LLM can interpret both the syntax of
the path 𝜋 (represented as ordinary code), as well as the language semantics represented by the
sp-rules. We illustrate with the following example.

Example 3.1 (Path-based LLM-based Symbolic Execution). We consider the simple example shown
in Figure 2 (a), which is based on Example Program 3 in [41] . We assume that xs is a data structure
implementing a multi-set, and insert/delete/size can be expanded to sub-programs with a suitable
multi-set implementation (e.g., a singly linked list), and is initially empty. Furthermore, we assume
that the (read) operation always returns a positive number, which can be expressed in natural
language or as a formal rule (∀x,R : sp(read(x),R) → x > 0). Under these assumptions, the final
size of xs should be equal to n. We can express this as the following triple:

{n ≥ 0 ∧ xs.size() = 0 ∧ “read(x) always returns a positive number”} 𝐶simple {xs.size() = n} (Triple)

Although conceptually simple, the Figure 2 (a) program is challenging for several reasons, including
an unbounded loop, environmental input (read), and data-structure reasoning (xs). We may prove
(Triple) by enumerating paths, such as (𝜋simple) from Figure 2 (b), representing two iterations of the
loop. We can encode the VC (sp(𝜋simple,P) |= Q) as a prompt, which is confirmed using an LLM:

“Given the pre-condition P and the code 𝜋simple , does the post-condition Q hold?” □

This example shows how LLMs can solve tasks that are challenging for traditional program analysis
methods. That said, a simple path-based decomposition still inherits some limitations. Firstly,
there can still be an infinite number of paths (i.e., path explosion), leading to non-termination.
Secondly, each individual path could still be too long for the LLM to effectively reason over (e.g.,
path 𝜋simple from Figure 2 (b) can be generalized to any length). Finally, paths can accumulate
irrelevant statements, such as variable z, that can also exacerbate the path length problem.

3.3 LLM-based Symbolic Execution (Slice-based)
To address the path-explosion problem, our core idea is to merge individual sp-constraints (repre-
senting individual paths) into generalized sp-constraints representing (possibly infinite) sets of paths.
Given a partition Π ⊆ unfold (𝐶, 𝜖), our approach constructs a truncated sub-program 𝑇Π such that:
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sp(𝜋,P) |= sp(𝑇Π,P) for all 𝜋 ∈ Π (Generalization)

Thus, instead of disposing of a (possibly infinite) number of verification conditions (VCs) of the form
(sp(𝜋,P) |= Q) for each 𝜋 ∈ Π, our approach disposes of a single VC of the form (sp(𝑇Π,P) |= Q)
for the entire set (Π). First, we shall present a method for constructing a truncated sub-program
for a given partition. Next, we shall present a partitioning algorithm that needs only consider a
finite number of subsets, even for programs with infinite paths (unbounded loops), ensuring the
symbolic execution algorithm always terminates.

3.3.1 Construction. We consider the construction of truncated sub-programs.

Truncation. Given a program 𝐶 and a (possibly infinite) subset of Π ⊆ unfold (𝐶, 𝜖), we derive a
truncated sub-program 𝑇Π equivalent to 𝐶 for all 𝜋 ∈ paths, and is unreachable otherwise:

Π ⊆ unfoldreachable (𝑇Π, 𝜖) ⊆ unfold (𝐶, 𝜖) (Truncation)

Here, (unfoldreachable) excludes all paths that terminate abnormally via a special assume(0) (i.e., as-
sume false) statement. Thus, assume(0) represents a statement that is assumed to be unreachable.3
Consider all statements (𝑠) in𝐶 that are not covered by any path 𝜋 ∈ Π, then we can construct𝑇Π by
replacing all such (𝑠) with assume(0). We can represent this idea using the following rewrite rule:4

𝑠 → assume(0) if 𝑠 ∉ 𝜋 for all 𝜋 ∈ paths (Unreachable)

We may also apply the following rules to further simplify the resulting sub-program:
assume(0);𝐶2 → assume(0) 𝐶1; assume(0) → assume(0)

if 𝑏 then 𝐶1 else assume(0) end→ assume(𝑏);𝐶1 if 𝑏 then assume(0) else 𝐶2 end→ assume(¬𝑏);𝐶2

while 𝑏 do assume(0) done→ assume(¬𝑏)

These rules preserve the (Truncation) property while also reducing the size (token count) of the
resulting 𝑇Π , which is beneficial for LLM prompting.

Slicing. We can further reduce the size of the truncated sub-program using program slicing [71].
We define a slice (𝑆Π) to be a sub-program derived from 𝑇Π by deleting (i.e., replacing by 𝜖) any
statement (𝑠) in 𝑇Π that does not violate the condition:

sp(𝑇Π,P) |= Q iff sp(𝑆Π,P) |= Q (Slice)

Our main result is as follows. If (sp(𝑆Π,P) |= Q) holds, then:
(1) (sp(𝑇Π,P) |= Q) holds by (Slice); and
(2) (sp(𝜋,P) |= Q) for all 𝜋 ∈ Π holds by (1) and (Generalization).

In other words, the single VC (sp(𝑆Π,P) |= Q) is sufficient to dispose of the entire partition (Π). We
can apply standard slicing methods, such as Weiser’s back slicing algorithm [71] (with vars(Q) as
the slice criterion), to construct 𝑆Π from 𝑇Π . The back slicing algorithm traverses the Control Flow
Graph (CFG), and deletes any statement that is not data- or control-flow-dependent on vars(Q).
The slicing algorithm is illustrated in Algorithm 2.

Example 3.2 (Slice-based Symbolic Execution). We consider Example 3.1 once more. Here, the
truncated slice (𝑆simple) in Figure 2 (d) is a generalization of the infinite partition (Π) representing
all feasible paths through the while-loop, including the Figure 2 (b) path (𝜋simple). An LLM can be
used to verify the generalized verification condition (VC) encoded in natural language.
3Similar to __builtin_unreachable() from gcc.
4We use the standard notation (lhs→ rhs) to mean that any term matching the lhs is rewritten to the term matching rhs.
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“Given the pre-condition P and the code 𝑆simple , does the post-condition Q hold?”
Path-based symbolic execution will infinitely unroll the while-loop, generating a new VC for each
loop iteration. In contrast, slice-based symbolic execution requires only a single VC to be checked.
Furthermore, (𝑆simple , 5 lines, 28 tokens) is simpler and more compact than all of (𝐶simple , 10 lines,
56 tokens), (𝜋simple , 16 lines, 85 tokens), and (𝑇simple , 8 lines, 48 tokens). Truncation and slicing are
useful for removing irrelevant statements while preserving paths, meaning that the corresponding
prompt is simpler and more concise, thereby improving the accuracy of LLMs. □

Input: A CFG sub-graph𝐺 ; reverse topological order
Output: A slice ⊆ 𝐺

1 Function GenSlice(𝐺 , Q):
2 slice← ∅; vars← getVars(Q)
3 for 𝑠 ∈ 𝐺 do
4 if 𝑠 modifies any 𝑣 ∈ vars, or
5 conditional 𝑠 reads any 𝑣 ∈ vars then
6 slice← slice ∪ {𝑠 }
7 vars← vars ∪ getDependencies(𝑠 )
8 end
9 return slice

Algorithm 2: Basic back-slicing algorithm.

Discussion. Our approach is related to path
merging and loop invariants in traditional
symbolic execution. Here, given a set of 𝑛
path constraints, represented as translated
logical formulae𝜑𝑖 , 𝑖 ∈ 1..𝑛, the idea is to find
a formula 𝜙 that is generalization (𝜑𝑖 |= 𝜙).
Thus, the 𝑛 verification conditions (𝜑𝑖 |= Q)
can be combined into a single verification
condition (𝜙 |= Q), helping to mitigate the
path explosion problem. Similarly, the (possi-
bly infinite) set of path constraints 𝜚𝑖 through
a loop can be generalized into a loop invari-
ant 𝐼 , such that (𝜚𝑖 |= 𝐼 ), allowing the loop to
be handled without infinite unrolling. How-
ever, loop-invariant discovery over formulae
is difficult and undecidable in the general case. In contrast, our approach avoids the problem, since
the sp-constraints are never translated into a different representation.

Input: The Control-Flow Graph (CFG)
Output: A coverage-based partitioning
Globals :Coverage map (covMap), end node (end)

1 Function GenPartitions(node, pathCov, path):
2 if pathCov ∈ covMap then return ∅
3 pathCov ← pathCov ∪ {node}
4 path← path ++ node
5 covMap← covMap ∪ {path}
6 if node = end then return {path}
7 partitions← ∅
8 for succ ∈ successors(node) do
9 partitions← partitions ∪

10 GenPartitions(succ, pathCov, path)
11 return partitions

Algorithm 3: Path partitioning algorithm

3.3.2 Partitioning. Section 3.3.1 describes
the construction of a truncated slice 𝑆 given
a partition (Π) that subset of paths (Π ⊆
unfold (𝐶, 𝜖)). In principle, any partitioning
(Π1 ∪ ... ∪ Π𝑛 = unfold (𝐶, 𝜖)) can be used.
However, a good partitioning aims to mini-
mize the slice (𝑆𝑖 ) size for each Π𝑖 , 𝑖 ∈ 1..𝑛, in
order to simplify the prompts ultimately sent
to the LLM. Our approach is to construct a
partitioning based on path coverage.

Path Coverage. Under Section 3.1, we de-
fine a path (𝜋 ) to be a linear program over
statements or branches (represented as as-
sertions) from 𝐶 . Here, we define a Control
Flow Graph (CFG) path to be a sequence of
nodes (a.k.a. locations) ⟨𝑙1, ..., 𝑙𝑚⟩ through the
CFG representation of 𝐶 . Given a CFG path
(𝜋 ), we define path coverage to be the set
(cov(𝜋) = {𝑙1, ..., 𝑙𝑚}), i.e., the reinterpretation of (𝜋 ) from a sequence to a set. It is common for
distinct paths to have the same coverage; for example, different iterations of the same loop have
distinct sequences, but produce equivalent sets (i.e., covering the same nodes). We make two key
insights. First, paths with distinct coverage will have distinct truncations, since each path must
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void f(LIST *xs, int n) {
  for (int i = 1; i <= n; i++)
  { int x = read();
    if (x < 0)
      xs = delete(xs, x);
    else
      xs = insert(xs, x);
    int z = size(xs);
    write(x); }
}

(a)

void f(LIST *xs, int n) {
  for (int i = 1; i <= n; i++)
  { int x = read();
    assert (!(x < 0));
    xs = insert(xs, x);
  }
}

(d)

For the following code slice, assume
     n >= 0, lsize(xs) = 0, and
read() always returns a positive int.

For all paths through the slice, does
the following post-condition hold?
               size(xs) = n

...

(e) (f)(b)

Func

For

Block

Decl IfThenElse Stmt Stmt

StmtExpr Stmt

...

...

(c)

Func

For

Block

Decl

Stmt

IfThenElse Stmt Stmt

StmtExpr

...

...

FAIL

PASS✓

Fig. 3. Example workflow. Here, (a) is the original source code, (b) is the Abstract Syntax Tree (AST) parsed
from the code, (c) is a generated path slice (Algorithm 3 and Algorithm 2), (d) is the slice rendered back

into the original source code, and (e) is the generated prompt comprising a pre-condition, the slice, and the

post-condition, and (f) is the LLM inference.

differ by at least one location. This will be used as the basis for partitioning. Secondly, the number
of distinct paths w.r.t. coverage is finite, meaning that LLM-based symbolic execution (slice-based)
necessarily terminates—even for unbounded loops.

Partitioning Algorithm. The core idea is to enumerate CFG paths (𝜋cov) with distinct coverage (cov).
Each partition (Πcov ⊆ unfold (𝐶, 𝜖)) is implicitly defined as all paths with the same path coverage
as (cov). The algorithm uses a Depth First Search (DFS) exploration over the CFG, as illustrated in
Algorithm 3. Here, the algorithm takes a CFG representation of 𝐶 , and generates a partitioning
as a set of representative paths (𝜋cov) for each distinct coverage class (cov). The algorithm works
as a standard DFS path construct algorithm, but also maintains a coverage map (covMap) that
tracks previously-seen coverage prefixes. When a (node ∈ CFG) is visited, the coverage map is
consulted, and the path is pruned if the prefix has been observed before. The coverage map ensures
that Algorithm 3 both (1) terminates, and (2) only returns paths (partitions) that differ by at least
one location/node. Each output path (𝜋cov) corresponds to a partition (Πcov), which is then used
to construct a corresponding truncated sub-programs (𝑇cov) and slice (𝑆cov) that is used for LLM
prompting.
Given two distinct coverages (cov, cov′), the resulting slices (i.e., 𝑆cov , 𝑆cov′ ) can sometimes

be equivalent (𝑆cov = 𝑆cov′ ) if all distinguishing nodes are removed by the slicer. Furthermore,
some truncated slices may generalize others, i.e., (sp(𝑆cov,P) |= sp(𝑆cov′ ,P)). For example, under
Algorithm 3, then 𝑆 = ⟨i := 1; assume(¬(i ≤ n))⟩ is also a valid slice of (𝐶simple, Figure 2)
representing zero iterations of the while-loop. Nevertheless, our LLM-based symbolic execution
algorithm orders VCs by size, in order to find a least refutation of the post-condition (Q).
Discussion. Algorithm 3 is guaranteed to terminate, since the number of possible distinct coverage
sets is finite. Thus, unlike path-based symbolic execution, slice-based symbolic execution will
always terminate, even for programs with unbounded loops. For example, the truncated slice
(𝑆simple) from Figure 2 (b) generalizes infinitely many paths through the loop (for any number
of iterations). Furthermore, the size of each slice 𝑆 is always bounded by the size of the original
program 𝐶 , whereas unrolled paths can exceed any length.

4 LLM-based Symbolic Execution in Practice
The truncated slice-based symbolic execution algorithm of Section 3 is defined for an idealized
programming language (the language of Hoare triples). In this section, our aim is to port our abstract
approach to real-world programming languages (e.g., C/Java/Python). Our first main insight is
that the main symbolic execution and slicing algorithms are agnostic to the target programming
language—provided there is a method for parsing the source code into some suitable representation
for path generation and slicing. Our second main insight is that, since LLMs are approximate
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if ( z != 0 )

  x = y / z;

else

  System.err.println("div by 0!");

if z != 0 :

  x = y / z

else:

  os.write(2, "div by 0!\n")

if ( z != 0 )

  x = y / z;

else

  fputs("div by 0!\n", stderr);

(AST)IfThenElse

Stmt StmtExpr

Fig. 4. Example AST representation of an if-then-else statement across the C, Java, and Python programming

languages. Each AST node is represented generically by the file range from which the element was parsed, as

illustrated by the nested colored boxes.

oracles, the greater workflow can also be approximate—meaning that each individual step need not
be perfectly precise, provided the overall accuracy is not significantly degraded. These insights
significantly simplify our overall design.
An example of the workflow is illustrated in Figure 3. First, our workflow uses a lightweight

parsing framework (specifically, tree-sitter [9]) to parse the source code (a) into an Abstract
Syntax Tree (AST) representation (b). From the AST, a Control-Flow Graph (CFG) is constructed,
allowing for the finite enumeration of all path partitions using Algorithm 3. For each enumerated
partition, a truncation and slice is constructed (c), by removing statements that are not control- or
data-flow dependent on the post-condition Q, using Algorithm 2. Next, the slice is rendered back
into the original source language (d). Essentially, this means emitting sliced path elements, deleting
(i.e., not emitting) non-sliced path elements, and replacing (i.e., replace by assume(0)) all other
non-path elements. The resulting slice generalizes a (possibly infinite) set of paths through the
program. Finally, the slice is used to construct a text-based prompt (e) used to query an LLM (f).
steps (c)-(f) are repeated for each partition using Algorithm 1, until exhaustion or the discovery of
a counterexample.

4.1 Partitioning and Truncated Slice Generation

Parsing.We use the tree-sitter framework [9] to parse the source code into an AST. Each AST
node comprises a node type representing some syntactic element, the file range (source file and offset
range) from which the element was parsed, and zero or more children of sub-elements. The AST is
unified so that the shared language features are mapped to the same representation, as illustrated
in Figure 4. Although tree-sitter does not guarantee perfect parsing, this is tolerable under our
approximate design. Our approach also avoids heavyweight and specialized compiler frameworks
necessary for precise parsing (e.g., clang [42] for C, javac [4] for Java, and CPython [68] for
Python), significantly simplifying the implementation.

CFG Construction. The next step is to lower the AST into a Control Flow Graph (CFG), where
each node represents a statement or a condition, followed by one (or more) control-flow edges to
successor nodes. The CFG is language agnostic, and common language features (e.g., if-then-else,
while-loops, etc.) are lowered into common CFG patterns.

Slice generation. The path partitioning is generated using Algorithm 3. For each partition Π, a
corresponding truncated sub-program 𝑇Π is generated by substituting non-covered nodes/sub-
programs with an assume(0) statement, followed by simplification. From this, a truncated slice 𝑆Π
is generated by applying Weiser’s back-slicing algorithm (as illustrated in Algorithm 2). Here, the
variables from the post-condition (Q) are used as the slicing criterion, and Algorithm 2 removes all
nodes from 𝑇Π of which Q is not control- or data-flow dependent.

4.2 Truncated Slice Rendering
So far, each slice (𝑆Π) is represented as a sub-graph of the (truncated) CFG. Our ultimate target is an
off-the-shelf LLM, meaning that the slice must be rendered back into a generic text form. For this,
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we leverage the underlying AST representation based on file ranges. For the rendering algorithm,
we use an interval tree (𝐼 ) mapping ranges to strings. For each CFG node (and the corresponding
AST statement 𝑠), we insert all 𝑠 ∈ 𝑆Π into 𝐼 .

Context. We also include the AST path from the root down to each sliced (𝑠), such as the enclosing
function, control-flow context (if-then-else, while-loops, etc.), or class definitions (for Java). This
ensures that the rendered slice is coherent (reparsable) code, rather than a collection of isolated
statements. Furthermore, it is often useful to include all relevant non-executable AST nodes from
which each 𝑠 depends, including variable declarations, type declarations, member declarations,
function declarations, global declarations, macro definitions, etc. Such dependencies are matched
based on the AST name. For example, given the executable statement (xs = insert(xs, x)),
then any function declaration or macro definition matching the name “insert” can be included
in the context. Since we rely on lightweight parsing and not a compiler front-end with semantic
information, name-based matching may over-approximate dependencies. However, this is allowable
under our approximate workflow, and the LLM will often ignore irrelevant context.

The slice renderer also preserves the original formatting, including the preceding and succeeding
whitespace and comments. Preserving such information is not strictly necessary for C and Java, but
is essential for whitespace-sensitive languages such as Python. Furthermore, source-code comments
can provide additional context, such as the intent of programmers, which can assist LLM inference.

Example. An example rendered slice is illustrated in Figure 3 (d). Here, all sliced executable state-
ments are preserved, aswell as the enclosing context (e.g., function declaration for f()). Furthermore,
the inner if-then-else has been simplified to an assertion, and the formatting (whitespace) has been
preserved. The resulting slice is coherent C code in its own right. Crucially, each path through the
slice corresponds to an equivalent path in the original programming, meaning that any inference
on the slice is also a valid inference for the original code.

LLM Inference. Once the rendered slice has been generated, the final step is prompt construction
and LLM inference. This step can be highly customized, but for our basic design, we use a prompt
structure that mirrors a Hoare triple {P}𝑆{Q} where P is a pre-condition, Q is a post-condition,
and 𝑆 is the generated slice (see Example 2.3, Example 3.2, and Figure 3 (e)). In addition, some basic
instructions for the LLM are provided, such as the output format. Here, we assume that the LLM
will generate one of two possible responses to the prompt, namely PASS (the post-condition holds)
or FAIL (the post-condition does not hold).

4.3 Implementation
We have implemented our workflow in the form of the AutoBug tool. AutoBug takes as input
a program 𝐶 in a supported programming language (currently C/Java/Python), pre- and post-
conditions (P and Q) expressed as code, constraints, or natural language. AutoBug automatically
decomposes the program into a sequence of truncated slices, and then constructs a sequence of
prompts (a.k.a. verification conditions) to be sent to the LLM for inference. The slices are ordered
by size to find the least counterexample to the post-condition where applicable. AutoBug is also
language-agnostic, except for the parser and some elements of the renderer. Furthermore, AutoBug
is lightweight and approximate by design—significantly simplifying the implementation (i.e., it
does not rely on language-specific compiler infrastructure). This also reflects the nature of LLM
inference, which is heuristic by nature rather than relying on precise parsing and semantic analysis,
but can still make useful inferences for many real-world applications. The implementation is also
designed to be LLM-agnostic: since most modern LLMs expose a common API interface, AutoBug
can be configured to query different models without changes to the core workflow.
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5 Evaluation
To evaluate the effectiveness of LLM-based symbolic execution implemented by AutoBug, we
answer the following research questions:

RQ.1 (Accuracy) What is the accuracy of AutoBug compared to baselines?
RQ.2 (Scalability) Can AutoBug scale to real-world large-scale programs?
RQ.3 (Language Agnosticism) Can AutoBug support multiple programming languages?

5.1 Experimental Setup
5.1.1 Dataset. We evaluated AutoBug on two widely-used datasets: REval and CodeForces.
REval [13] is designed to evaluate the code-reasoning abilities of LLMs. It consists of 85 Python
solutions to LeetCode problems, some of which include accompanying test suites. The subjects
in REval usually employ multiple control flow constructs, such as nested conditions and loops.
This dataset was released in June 2024. In addition, we included the CodeForces dataset, which
presents more challenging programming tasks. CodeForces is a programming contest platform
that regularly publishes new problem sets. From this platform, we collected 662 subjects written in
both Python and C, published in June 2025. To the best of our knowledge, this is the most recent and
largest open dataset currently available from the platform. The subjects in both datasets typically
span around 100 lines of code, with token counts reaching up to 900.

To conduct the evaluation, we also needed to construct non-trivial Hoare triples for each subject.
This presented a challenge, as both REval and CodeForces provide only problem descriptions in
natural language, source-code solutions, and test suites in some cases. To generate Hoare triples,
we employed three different strategies:

• REval-Desc: We treated the program descriptions in natural language as the post-conditions, and
used any restrictions on test input when available as the pre-conditions. This strategy was applied
to the REval dataset to construct REval-Desc with the corresponding pre- and post-conditions.
• CodeForces-Automatic: In this strategy, we used an LLM to automatically generate pre- and
post-conditions in natural language based on the program descriptions from CodeForces. This
resulted in the dataset CodeForces-Automatic for evaluation.
• Mixed-Manual: Here, we manually annotated formal pre- and post-conditions in executable
code based on implicit properties of the original problems, e.g., by adding assertions to verify the
correctness of a sorting algorithm. Given the substantial manual effort required, we randomly
sampled 30 subjects in both REval and CodeForces, covering both Python and C solutions, and
applied this strategy to them. These formed another dataset Mixed-Manual.

5.1.2 Baselines. For comparison, we selected two main types of baselines. For the first baseline,
we used an “ad-hoc” LLM-based program analysis over the entire subject without decomposition.
This baseline queries the LLM for a counterexample (if one exists) or whether the post-condition
always holds for inputs that satisfy the pre-condition. This baseline aims to show the effectiveness
of the systematic partitioning provided by our tool AutoBug.
The second baseline includes traditional symbolic execution tools. For Python subjects, we

selected CrossHair [61] as a baseline. Although there are other traditional symbolic execution tools
for Python, such as PyExZ3 [7] and pySym [8], they are no longer maintained (unmaintained for
six years or more at the time of writing). For the C subjects, we compared our tool with KLEE [11], a
well-established andmature traditional symbolic execution tool. A practical issue of these traditional
tools is the lack of expressivity in the pre- and post-conditions, which must be specified in code
or other formal languages. Therefore, we only compare AutoBug with traditional tools on the
Mixed-Manual dataset, which contains conditions in the formal form of executable code.
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5.1.3 Test Models. We selected five of the most popular openly available language models (at the
time of writing)5. Where possible, we also included different numbers of parameters to demonstrate
the potential impact of the parameter number.

• Meta’s Llama3 series [33]: Instruction-tuned model optimized for general use cases such as
dialogue and chatting, which was released in December 2024.
• Microsoft’s Phi-4 [1]: Model trained on high-quality data from filtered public domain websites
and acquired academic books, designed to aid research on language models, which was released
in December 2024.
• DeepSeek’s DeepSeek-R1 [22]: The first-generation reasoning model from DeepSeek, achieving
performance comparable to OpenAI-o1 across math, code, and reasoning tasks with much smaller
parameters, which was released in January 2025.
• Google’s Gemma3 [66]: A lightweight family of multimodal models that features a larger context
window of 128K, and released in March 2025.
• Alibaba’s Qwen3 [75]: The latest version of the Qwen model family, designed to advance
performance, efficiency, and multilingual capabilities, and it was released on April 2025.

All experiments were carried out using ollama version v0.9.6. Each experiment was repeated
three times, and we report the average results rounded to the nearest integer.

5.2 RQ.1: Accuracy
Method. To evaluate the accuracy of AutoBug in generating counterexamples and verifying
post-conditions, we compared AutoBug with the “ad-hoc” LLM-based program analysis on REval-
Desc, CodeForces-Automatic, and Mixed-Manual. In addition, we compared AutoBug with
traditional symbolic execution tools CrossHair and KLEE on Mixed-Manual with formal pre- and
post-conditions expressed in executable Python or C code. We did not conduct the comparison
on other datasets, since traditional tools cannot handle post-conditions in natural language. In
each subject, we executed AutoBug and baselines, and reported their results. The accuracy in each
subject was measured by comparing the result with the ground truth derived from the provided
test suites, if available, or manual verification.

Main result. Table 2 shows the accuracy of AutoBug compared to the “ad-hoc” LLM-based program
analysis across different datasets under different models. The experiments were conducted under
the list of models (Model). For each dataset, we report the total number of subjects analyzed (Total),
how many subjects were correctly analyzed by the tool (Correct), and the corresponding accuracy
rate (Accuracy). Overall, AutoBug consistently achieves a higher accuracy than the baseline in
all datasets using different forms of Hoare triples. On average, AutoBug improves accuracy from
84.7% to 90.6% on REval-Desc, from 79.2% to 86.4% on CodeForces-Automatic, and from 66.7%
to 73.3% on Mixed-Manual. Notably, on these three (3) datasets under eight (8) language models,
AutoBug outperforms the baseline in 20 out of 24 experiments (i.e., 83.3% scenarios), with the only
exceptions on REval-Desc and Mixed-Manual when using the model Gemma3-27B. These results
demonstrate the effectiveness of our approach in improving the accuracy of program analysis.

5https://ollama.com/search
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Table 2. Accuracy of AutoBug and the “ad-hoc” LLM-based program analysis under different datasets.

Model Method REval-Desc CodeForces-Automatic Mixed-Manual
Total Correct Accuracy Total Correct Accuracy Total Correct Accuracy

Llama3-8B AutoBug 85 82 96.5% 662 654 98.8% 30 23 76.7%
Baseline 85 79 92.9% 662 653 98.6% 30 22 73.3%

Llama3.1-8B AutoBug 85 84 98.8% 662 616 93.1% 30 23 76.7%
Baseline 85 71 83.5% 662 547 82.6% 30 18 60.0%

Llama3.3-70B AutoBug 85 72 84.7% 662 617 93.2% 30 26 86.7%
Baseline 85 70 82.4% 662 589 89.0% 30 21 70.0%

Phi-4-14B AutoBug 85 74 87.1% 662 626 94.6% 30 24 80.0%
Baseline 85 72 84.7% 662 584 88.2% 30 24 80.0%

DeepSeek-R1-70B AutoBug 85 85 100.0% 662 561 84.7% 30 19 63.3%
Baseline 85 82 96.5% 662 508 76.7% 30 17 56.7%

Gemma3-4B AutoBug 85 73 85.9% 662 305 46.1% 30 20 66.7%
Baseline 85 64 75.3% 662 265 40.0% 30 16 53.3%

Gemma3-27B AutoBug 85 72 84.7% 662 598 90.3% 30 20 66.7%
Baseline 85 76 89.4% 662 547 82.6% 30 23 76.7%

Qwen3-32B AutoBug 85 71 83.5% 662 601 90.8% 30 21 70.0%
Baseline 85 61 71.8% 662 499 75.4% 30 21 70.0%

Average AutoBug 85 77 90.6% 662 572 86.4% 30 22 73.3%
Baseline 85 72 84.7% 662 524 79.2% 30 20 66.7%

Table 3. Accuracy of AutoBug and tra-

ditional symbolic execution tools.

Method Mixed-Manual
Total Correct Accuracy

AutoBug 30 22 73.3%
Baseline 30 14 46.7%

The comparison results with traditional symbolic exe-
cution tools are presented in Table 3, which shows the ac-
curacy of AutoBug, and CrossHair and KLEE on Mixed-
Manual with formal post-conditions in the form of exe-
cutable code. We can see that AutoBug significantly out-
performs these traditional tools. AutoBug successfully an-
alyzes 73.3% of subjects, compared to just 46.7% for tradi-
tional tools. This performance gap is due to the inherent
limitations of traditional symbolic execution (as illustrated
in Section 2.2), such as the difficulties in reasoning about nested loops and complex constructs.
Moreover, compared to traditional tools, AutoBug also demonstrates greater applicability by
supporting expressive post-conditions, including those written in natural language.

AutoBug improves accuracy over the baselines across different datasets. Moreover, AutoBug
is more applicable than traditional symbolic execution tools, which can handle pre- and post-
conditions expressed in either code or natural language.

Impact of different LLMs. We evaluated AutoBug on multiple different LLMs, even with different
numbers of parameters as shown in Table 2: Meta’s Llama3, Llama3.1 and Llama3.3 models with
8B and 70B parameters, Microsoft’s 14B Phi-4 model, the 70B distilled version of DeepSeek-R1
model, Google’s Gemma3 model with 4B and 27B parameters, and Alibaba’s 32B Qwen3.
It is interesting to note that the accuracy varies significantly under different models, even

with different model sizes. Among the models used, the most significant accuracy improvement
stems from Llama3.1-8B, where AutoBug achieves 98.8% accuracy compared to the baseline’s
83.5%. This highlights the benefits of partitioning in improving the accuracy of LLM reasoning for
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comparatively small models. In contrast, on larger models such as Llama3.3-70B and DeepSeek-
R1-70B, such improvements in accuracy are more subtle, mainly due to the fact that these larger
models inherently have a stronger reasoning ability. However, the result is consistently positive for
larger models, with the exception of Gemma3-27B. This is a positive result—smaller LLMs can be
run locally on consumer hardware, and AutoBug exhibits a clear benefit for these use cases.

Under Gemma3-27B, AutoBug outperforms the baseline on CodeForces-Automatic, but shows
weaknesses on REval-Desc and Mixed-Manual. Upon closer investigation, we attribute this to
Gemma3-27B’s tendency to overinterpret problem specifications and penalize even minor mis-
matches. For example, during slicing, AutoBug may omit certain input-handling statements if they
are irrelevant to the target context, resulting in incomplete input-processing logic. Gemma3-32B
penalizes such incompleteness and reports unsatisfactory when inputs are not fully processed,
while Gemma3-4B tends to overlook these issues and focuses on reasoning about the main task.

AutoBug improves accuracy over the evaluated LLMs, where smaller LLMs benefit the most.

Prompt size. Table 4 shows the average token counts used in the LLM prompts for both the baseline
and AutoBug across different datasets. To calculate the token count in each LLM prompt, we use
the tool tiktoken [37] with the corresponding Byte-Pair Encoding (BPE) token encoding, which is
also used by GPT-4o mini [55]. To clearly demonstrate the reduction ability of AutoBug, we also
reported the reduction ratio achieved by AutoBug, compared with the baseline.

As shown in Table 4, AutoBug effectively reduces token counts—reducing the length and com-
plexity of the prompt—with average reductions of approximately 9.5%, 25.3%, and 26.3% compared
to the baseline for REval-Desc, CodeForces-Automatic, and Mixed-Manual, respectively.

Table 4. Average LLM token counts for the baseline and AutoBug under different datasets, along with the

token reduction ratio achieved by AutoBug. Each value is reported in the form of Mean ± Standard Deviation.

Method REval-Desc CodeForces-Automatic Mixed-Manual
Baseline 224.8 ± 85.9 346.4 ± 116.4 146.9 ± 48.3
AutoBug 203.4 ± 75.5 258.6 ± 102.1 108.3 ± 40.2

Reduction Ratio 9.5% 25.3% 26.3%

AutoBug significantly reduces the average token count required for LLM queries to find the
minimum counterexample across all tested datasets.

Case study. To illustrate the advantages of AutoBug over the baselines, we use a concrete example
in Figure 5. This example consists of a buggy Python function shown in Figure 5 (a), which is
extracted from the REval dataset [13]. Here, the pre- and post-conditions are formally annotated
with the corresponding PRE and POST comments. The pre-condition specifies that value is not
empty, which is indicated by the (assume len(value) > 0) statement located at the beginning of
the function. The post-condition of the function states that |res| ≤ |float (value) |. This condition
does not always hold, since the given function rounds up any decimal input ending in “.5”. For
example, closest_integer (’1.5’) = 2, which violates the post-condition.
We find that most LLMs cannot correctly reason over the whole program. A typical response

from Llama3.1-8B [33] when fed with the entire original program is as follows:
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(a) original Python function

def closest_integer(value):
assume len(value) > 0 # PRE

if value.count('.') == 1:
# remove trailing zeros
while value[-1] == '0':

value = value [:-1]

num = float(value)
if value [-2:] == '.5':

if num > 0:
res = ceil(num)

else:
res = floor(num)

elif len(value) > 1 or value [0] != '0':
res = int(round(num))

else:
res = 0

assert abs(res) <= abs(float(value)) # POST

(b) truncated slice #1

def closest_integer(value):
assume len(value) > 0 # PRE
if value.count('.') == 1:

# remove trailing zeros
while value[-1] == '0':

value = value [:-1]
num = float(value)
assume value [-2:] != '.5'
assume len(value) > 1 or value [0] != '0'
res = int(round(num))
assert abs(res) <= abs(float(value)) # POST

(c) truncated slice #2

def closest_integer(value):
assume len(value) > 0 # PRE
assume value.count('.') != 1
num = float(value)
assume value [-2:] == '.5'
assume num > 0
res = ceil(num)
assert abs(res) <= abs(float(value)) # POST

Fig. 5. (a) is a buggy Python program that implements a simple function to take a value (string) representing

a number and return the closest integer to it. In cases where the number is equidistant from two integers, it

rounds away from zero. This example includes an unbounded loop (while value[-1] == ’0’: ...), invokes
third-party library APIs (ceil, floor, and abs), and introduces complex language constructs like list slicing.

(b) and (c) show the corresponding program slides for inputs "0.0" and "2.5", respectively.

“For inputs with a single decimal point, removing trailing zeros ensures that the absolute
value of res (the rounded integer) is less than or equal to the absolute value of the original
float (float (value)).”

The LLM then proceeds to incorrectly declare that the post-condition of the program will always
be satisfied. In this case, the LLM is distracted over the trailing zero removal branch so much,
thereby it does not actually try to analyze what the program is supposed to do with the converted
value—i.e., an example of hallucination.

In contrast, AutoBug decomposes the input program into truncated slices. Two of the generated
slices from the original Python function are shown in Figure 5 (b) and (c). As illustrated in this
example, we can see that AutoBug significantly reduces the complexity and size of the resulting
truncated slices. In Figure 5 (b), only the elif branch is considered, with the others truncated,
forming implicit pre-conditions in the form of assume-statements. In Figure 5 (c), only the second if
branch is assumed to be taken. In addition, the original Python code (a) contains 430 tokens, which
is reduced to 103 tokens (∼76% reduction) for (b) and 69 tokens (∼84% reduction) for (c). Together
with the reduced CFG complexity, the slices form a smaller and more targeted prompt, increasing
the chance of a correct validation result. Using these truncated slices, the LLM correctly infers that
the post-condition holds for slice (b), but does not hold for slice (c). For example, Llama3.1-8B
outputs the following for (c) (emphasis original):

“In other words, given an input that satisfies the precondition (but has a decimal point
followed by '.5'), the postcondition will not be satisfied. The result of ceilwill exceed
the absolute value of the original float. Therefore, we conclude that the postcondition
indicated by the assert statement with a POST comment is not always satisfiable.”

Since there exists a counterexample for (c), AutoBug has shown that the post-condition does not
hold for the original program (a).
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Table 5. Statistics of large-scale programs used, including lines of code (#LoC) and total token counts (#Token).

Subject X11 ncurses nano cURL SQLite3 OpenSSH FFmpeg Zstd
#LoC 244K 54K 24K 172K 225K 144K 255K 35K
#Token 4960K 438K 197K 1379K 2341K 1427K 2761K 370K

Table 6. The token counts for file-based (File), function-based (Func), and slice-based (Slice) decompositions

of real-world bugs from X11 client applications and other examples. Here (✓) means the LLM correct detects

the bug, (✗) means the bug was not detected, and (−) means the token limit for the model was exceeded.

Subject Bug Token Count Llama3.1-8B Gemma3-4B
File Func Slice File Func Slice File Func Slice

xinput NULL-pointer 4281 1197 178 ✗ ✗ ✓ ✗ ✗ ✓

xlsclients NULL-pointer 140120 1090 229 − ✗ ✗ − ✗ ✗

xmodmap NULL-pointer 18683 2189 279 ✗ ✗ ✓ ✗ ✗ ✓

xset Divide-by-zero 17078 3164 506 ✗ ✓ ✓ ✗ ✓ ✓

xwininfo Buffer-overflow 152020 2560 597 − ✗ ✗ − ✗ ✗

ncurses NULL-pointer 1446 271 201 ✓ ✓ ✓ ✗ ✓ ✓

nano Environment race 6716 698 125 ✗ ✓ ✓ ✗ ✗ ✓

cURL assert-trigger 21285 5581 202 ✗ ✓ ✓ ✗ ✗ ✓

SQLite3 NULL-pointer 2341085 213088 4691 − − ✗ − − ✗

OpenSSH assert-trigger 10164 446 208 ✗ ✓ ✓ ✗ ✓ ✓

FFmpeg Buffer-overflow 118456 19242 4370 ✗ ✗ ✓ ✗ ✗ ✓

Zstd NULL-pointer 60813 936 328 ✗ ✗ ✓ ✗ ✗ ✓

Accuracy — — — — 8.3% 41.7% 75.0% 0% 25.0% 75.0%

We also attempted to analyze Figure 5 (a) using CrossHair, a traditional symbolic execution
engine for Python. However, CrossHair terminates after failing to find any violation of the post-
condition. We believe that this is due to an incomplete search or incomplete solving of the path
constraint by the underlying SMT solver (z3). In contrast, AutoBug is capable of exhaustively
enumerating all path partitions, and the underlying LLM correctly infers the corresponding slice.
This case study, although it involves a relatively simple program, highlights the limitations of
traditional methods when compared to AutoBug.

5.3 RQ.2: Scalability
Method. To evaluate the scalability of AutoBug, we selected eight (8) real-world large-scale
programs: X11, ncurses, nano, cURL, SQLite3, OpenSSH, FFmpeg, and Zstd, which are widely-
used benchmarks for evaluating the performance of bug-finding techniques. Table 5 summarizes
the statistics of these subject programs, including the lines of code (#LoC) and the token counts
(#Token). These subjects have lines of code up to 250K and have 197K–4960K token counts. In
this experiment, we examined whether AutoBug could successfully analyze the bugs recently
found by existing bug detectors [49]. These bugs were found in several X11 client applications
(xinput, xlsclients, xmodmap, xset, xwininfo), as well as in ncurses, SQLite3, and other common
UNIX libraries, respectively. To construct post-conditions, we negated the crash condition, such
as (ptr != NULL) for NULL-pointer dereference. To demonstrate the effectiveness of AutoBug’s
decompositions, we evaluated three forms: only relevant source files included (File), only relevant
functions included (Func), and relevant code sliced by AutoBug (Slice) along a path that exercises
the bug.
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Results. The results are shown in Table 6. AutoBug demonstrates strong scalability to real-world,
large-scale programs, with token counts for all cases remaining within the context window of
LLMs, making LLM-based symbolic execution feasible. Moreover, AutoBug achieves high accuracy,
successfully analyzing 75.0% of the bugs. In contrast, traditional symbolic execution tools suffer
from the well-known path-exploration problem and fail to scale to these programs. Additionally,
the token counts for these subjects are too large for the ad-hoc LLM-based analysis within a single
prompt, making decomposition necessary.

XIDeviceInfo* XIQueryDevice(Display *dpy ,
int deviceid , int *ndevices_return)

{
xXIQueryDeviceReply reply;
XExtDisplayInfo *extinfo = XInput_find_display(dpy)

;
...
*ndevices_return = -1;
return NULL;

}
void XIFreeDeviceInfo(XIDeviceInfo* info)
{

// POST: info != NULL
}
static int list_xi2(Display *display ,

enum print_format format)
{

// PRE: true
int ndev;
XIDeviceInfo *info , *dev;
info = XIQueryDevice(display , XIAllDevices , &ndev);
XIFreeDeviceInfo(info);

}

Fig. 6. Relevant code sliced for the bug in xinput.

Compared to naïve decomposition meth-
ods based on files and functions, AutoBug’s
slice-based decomposition method is signif-
icantly more effective. Using slicing, Auto-
Bug successfully analyzes 75.0% of the bugs,
while the file-based and function-basedmeth-
ods achieve only 8.3% and 41.7% success
rates, respectively. To further show the ef-
fectiveness of AutoBug’s slicing method,
we examine the bug in xinput. The bug re-
sides in a program that contains 244K sLOC
(∼4.96M tokens), but the sliced code is re-
duced to just 178 tokens, as shown in Fig-
ure 6. With the code size and complexity
dramatically reduced, the bug becomes ap-
parent: the XIQueryDevice() function re-
turns NULL (derived from an error-handling
path), and this value is immediately passed
to XIFreeDeviceInfo() (the intermediate
code was removed by the slicer), thus violating the post-condition. After truncation and slicing, the
violation is readily apparent even to small LLMs. In contrast, the other decompositions based on
files and functions result in 4,281 and 1,197 tokens, respectively. They include large amounts of
irrelevant information that obscure the bug and cause LLMs to miss it.

AutoBug scales to real-world large-scale programs with 75% accuracy. Truncated slicing signif-
icantly reduces prompt size and complexity—improving the accuracy of LLM inference.

5.4 RQ.3: Language Agnosticism
Method. AutoBug implements a lightweight workflow that is language-agnostic. To evaluate
AutoBug’s ability to analyze programs written in different programming languages, we conducted
this experiment using the same set of subjects implemented in Python, C, and Java, respectively.
Specifically, we use GPT-4o-mini to automatically translate the REval-Desc dataset (originally
written in Python) into equivalent C and Java versions. These translated programs form the C-
REval-Desc and Java-REval-Desc datasets, each consisting of 85 programs. We evaluated the three
datasets using the same LLMs and framework as in RQ.1, and then reported the average results.

Results. The results are illustrated in Table 7. Across these three datasets implemented in different
programming languages, AutoBug maintains similar performance and consistently improves the
accuracy of the analysis. Specifically, compared to the baseline—the ad-hoc LLM-based analysis,
AutoBug increases the accuracy of the analysis from 84.7% to 90.6% in Python, 78.8% to 87.1% in C,
and 83.5% to 89.4% in Java, respectively. These results demonstrate the versatility of AutoBug in
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Table 7. Accuracy of AutoBug and the baseline on the Python, C, and Java versions of Reval-Desc.

Model Method Python-REval-Desc C-REval-Desc Java-REval-Desc
Total Correct Accuracy Total Correct Accuracy Total Correct Accuracy

Average AutoBug 85 77 90.6% 85 74 87.1% 85 76 89.4%
Baseline 85 72 84.7% 85 67 78.8% 85 71 83.5%

handling multi-language programs, which is the direct result of its language-agnostic workflow
and the inherent ability of LLM to understand multiple languages. Notably, these improvements
are achieved without reliance on precise parsers and/or language-specific compiler front-ends.

To evaluate traditional symbolic execution tools such as CrossHair and KLEE, annotating formal
post-conditions requires significant manual effort. In RQ.1 (Section 5.2), we manually annotated
formal post-conditions and have shown the effectiveness of AutoBug in the programs with formal
post-conditions compared to traditional symbolic execution. In this experiment, we explored the
potential of using LLMs to automatically generate post-conditions based on specifications and
translate them into code suitable for symbolic execution. Specifically, for CrossHair, we instructed
LLM to generate the PEP 315-suitable contract specification, while we prompted LLM to generate
suitable calls to klee_make_symbolic for KLEE. However, the results were far from satisfactory. The
LLMs consistently failed to translate natural language post-condition specifications into concrete,
executable code. The generated code frequently contains compiler or runtime errors, including
incomplete implementations, missing function bodies, or absent header and import statements. For
example, CrossHair was only able to analyze fewer than 10% of the translated dataset (8 out of
85 subjects). These findings indicate that substantial manual effort is still necessary when using
traditional symbolic execution tools.

Across the same set of subjects implemented in different programming languages (C, Python,
and Java), AutoBug maintains similar performance and achieves consistent improvements in
the accuracy of the analysis.

5.5 Discussion
Our results show that path-based decomposition of program analysis tasks is effective at improving
LLM-based program analysis, especially for small LLMs and real-world problems. The significance
is that it allows for higher accuracy to be achieved with smaller models that can be run on consumer-
grade hardware. In addition, we prove that a lightweight and language agnostic workflow is feasible
and can still achieve good results.

Limitations. LLM-based program analysis is applicable to program analysis tasks that cannot be
handled by traditional means. That said, the approximate reasoning of LLMs is not suitable for
all applications, even with improved accuracy. LLMs are also unlikely to ever achieve the same
accuracy as traditional solvers for some tasks, such as solving systems of linear equations. As such,
we propose LLM-based symbolic execution as a complementary method that does not necessarily
replace traditional approaches for all use cases. Another limitation is that path-based decomposition
may still explode, even when our approach is guaranteed to terminate. This is an inherent limitation
of path-based reasoning. However, we believe that the decomposition based on the truncated slice
is a significant mitigation.

Threat to validity. A primary concern is the potential for data contamination in LLMs [60], where
our evaluation datasets may have been included in the models’ training data. To mitigate this issue,
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we selected the subjects from CodeForces that were released in June 2025, after the models’ pre-
training cutoff date. As shown in Table 2, AutoBug consistently outperforms the baseline on these
subjects. This suggests that the performance of AutoBug is not a result of data contamination.

6 Related Work
Static program analysis via symbolic execution. Symbolic execution [40] is an established method
for static programs whose origins also relate to early work formalizing programs as mathematical
logic. The idea is to execute symbolic states, representing sets of concrete inputs, allowing for the
exhaustive exploration of program behavior. Over the decades, many different symbolic execution
engines and frameworks have been developed, such as: KLEE [11], Owi [3], Symbolic PathFinder
(SPF) [57], Java PathFinder (JPF) [69], CrossHair [61], Angr [64], S2E [16], PyExZ3 [7], etc. Unlike
our approach, such traditional tools translate paths into some underlying formal language for
theorem proving, thus inheriting many of the limitations discussed in this paper. Furthermore, most
existing tools are specialized to a specific language (C, Java, binary, etc.) and are closely integrated
into specific compiler frameworks (e.g., LLVM [42] for KLEE). That said, LLMs use a fundamentally
different type of reasoning compared to the deductive reasoning of theorem provers. As such,
traditional approaches are suitable for problems that can be handled by traditional methods and for
applications where perfect accuracy is required.

LLM-based program analysis. One recent alternative to traditional program analysis methods is
Large Language Models (LLMs). LLMs are very general tools and can be applied to a wide variety
of tasks, including fuzzing [5, 50], vulnerability detection [79], and program repair [26]. Another
recent innovation is LLM-based agents [73], which are algorithms where decisions are made by
the LLM. Our core Algorithm 1 is traditional and not agent-based. However, an agentized version
could be made, but decisions (e.g., which branch to explore first) could be deferred to the LLM.

Intersection between symbolic execution and LLMs. There are some other nascent works that combine
LLMs and symbolic execution. HyLLfuzz [48] focuses on improving concolic execution integrated
in hybrid fuzzing. LLM-Sym [70] is an agent-based symbolic execution framework for Python code
that uses an LLM to translate paths into traditional path constraints suitable for solving via z3 [21].
LLM-Sym is fundamentally different in that our approach avoids translation altogether, instead
directly using the LLM itself as a solver. Since LLM-Sym still uses translation to z3, it inherits
many of the limitations of traditional symbolic execution engines discussed in this paper. Similarly,
Loopy [38] aims to discover loop invariants using LLMs, which can then be applied to symbolic
analysis. Our approach avoids the need for invariant discovery, since it is not based on translation.

7 Conclusion
In this paper, we introduce a variant of symbolic execution that uses an LLM as the underlying
reasoning engine instead of a traditional theorem prover or SMT solver. Our approach introduces a
generic path constraint representation in terms of the original code—allowing the LLM to reason di-
rectly over the path constraint and avoiding translation into a (less expressive) formal language. Our
approach allows for a path-based decomposition of the analysis task into smaller (more tractable)
subtasks, which use fewer tokens (helping scale), and are more targeted (helping accuracy). We im-
plemented our approach in the form of AutoBug—a practical LLM-based symbolic execution engine
that supports multiple programming languages (i.e., language agnostic, supporting C/Python/Java)
without depending on heavyweight compiler infrastructure. Our experimental results demonstrate
measurable improvements in terms of both accuracy and scale, especially in smaller models that
can run on consumer-grade GPUs.
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