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Abstract—Protocol implementations are stateful which makes
them difficult to test: Sending the same test input message
twice might yield a different response every time. Our proposal
to consider a sequence of messages as a seed for coverage-
directed greybox fuzzing, to associate each message with the
corresponding protocol state, and to maximize the coverage of
both the state space and the code was first published in 2020
in a short tool demonstration paper. AFLNet was the first code-
and state-coverage-guided protocol fuzzer; it used the response
code as an indicator of the current protocol state. Over the past
five years, the tool paper has gathered hundreds of citations,
the code repository was forked almost 200 times and has seen
over thirty pull requests from practitioners and researchers, and
our initial proposal has been improved upon in many significant
ways. In this paper, we first provide an extended discussion and a
full empirical evaluation of the technical contributions of AFLNet
and then reflect on the impact that our approach and our tool
had in the past five years, on both the research and the practice
of protocol fuzzing.

Index Terms—Greybox fuzzing, network protocol testing, state-
ful fuzzing.

I. INTRODUCTION

IT is critical to find security flaws in protocol implementa-
tions. Protocols are used by internet-facing servers to talk

to each other or to clients in an effective and reliable manner.
A protocol specifies the exact sequence and structure of mes-
sages that can be exchanged between two or more online parties.
However, this ability to talk to a server from anywhere in the
world provides ample opportunities for remote code execution
attacks. An attacker does not even require physical access to the
machine. For instance, the famous Heartbleed vulnerability is a
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security flaw in OpenSSL, an implementation of the SSL/TLS
protocol which promises secure communication.1

However, finding vulnerabilities in protocol implementations
is also difficult. First, a server is stateful and message-driven.
It takes a sequence of messages (a.k.a. requests) from a client,
processes the messages, and sends appropriate responses. Yet,
the implemented protocol may not entirely correspond to the
specified protocol, making model-based fuzzing approaches
[1], [2] less effective. For instance, as shown in Fig. 2, the
Live555 streaming media server implements a state machine
for the Real-Time Streaming Protocol (RTSP) that uninten-
tionally introduces an unspecified transition between the INIT
and PLAY states (shown in red). Second, the server’s response
depends on both the current message and its internal state,
which is influenced by earlier messages, posing challenges for
vanilla coverage-guided greybox fuzzers like American Fuzzy
Lop (AFL) and its extensions [3], [4].

Before the extension to state-coverage, greybox fuzzers were
primarily designed to test stateless programs (e.g., command
line programs or libraries) where the same input would mostly
produce the same output. If a generated input covered source
code that was not previously covered, it was added to the set of
input seeds for later fuzzing. If there was any program state, it
would not be considered. Indeed, users of AFL were aware of
these limitations and submitted several requests and questions
for stateful fuzzing support to its developers’ group [5], as
shown in Fig. 1.

In 2020, motivated by the aforementioned challenges of
stateful network protocol fuzzing and the pressing need for an
effective tool by researchers and practitioners, we introduced
AFLNET [6]–the first code- and state-coverage-guided greybox
fuzzer. However, an extended technical discussion and a full
empirical evaluation of all its components in a full-length article
have since been outstanding.

AFLNET integrates automated state model inference with
coverage-guided fuzzing, allowing both to work in tandem:
fuzzing generates new message sequences to cover new states
and incrementally complete the state model. Meanwhile, the dy-
namically constructed state model helps drive fuzzing towards
more critical code regions by leveraging both state coverage
and code coverage information from the retained message se-
quences. With these advanced features, AFLNET successfully
generated a random message sequence that discovered the hid-
den transition in the RTSP implementation of Live555 (see

1See http://heartbleed.com/
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Fig. 1. Requests from AFL’s users asking for stateful fuzzing support.

Fig. 2. RTSP as implemented in Live555. There exists an unspecified
shortcut between the INIT and PLAY state (shown in red).

Fig. 2), retained the sequence, and systematically evolved it
to uncover a critical zero-day vulnerability (CVE-2019-7314,
CVSS score: 9.8). In March 2020, we released AFLNET as an
open-source tool on GitHub: https://github.com/aflnet/aflnet.

Over the past five years, our tool has received tremendous
attention from both the research community and industry. As of
November 2024, it has garnered 872 stars on GitHub. It supports
17 protocols2, most of which were contributed by other re-
searchers. Security researchers have written experience reports
and tutorials about the application of AFLNET to challenging
targets such as as the 5G network [7], Internet of Things (IoT)
[8], [9], medical imaging applications [10], and automotive
systems [11] highlighting its impact on practice. Researchers
have cited the short AFLNET tool demo paper hundreds of times
(270+ according to Google Scholar), highlighting its impact
on research. Educators are introducing AFLNET as a coverage-
guided protocol fuzzer to hundreds of Master’s students at
several universities, including the University of Melbourne
and Carnegie Mellon University, highlighting its impact on
education.

2List of protocols supported by AFLNET: RTSP, FTP, MQTT, DTLS, DNS,
DICOM, SMTP, SSH, TLS, SIP, HTTP, IPP, TFTP, DHCP, SNTP, NTP, and
SNMP.

In this paper, we first provide an extended discussion and
a full empirical evaluation of the technical contributions of
AFLNET. We evaluate AFLNET in large-scale experiments on
the widely-used ProFuzzBench benchmark [12] to provide re-
searchers and practitioners with a deeper understanding of the
capabilities of AFLNET and the effectiveness of each of its com-
ponents. Specifically, we thoroughly analyze the effectiveness
of state feedback both independently and in combination with
traditional code coverage feedback. Additionally, we evaluate
the impact of different seed-selection strategies implemented in
AFLNET. Based on these results, we offer practical guidance to
AFLNET users on its optimal use cases and the most effective
configurations to maximize their results.

Finally, we reflect on the impact that our approach and our
tool had in the past five years, on both the research and the
practice of protocol fuzzing. This reflection not only illus-
trates AFLNET’s growing impact but also identifies open chal-
lenges and opportunities, shedding light on recent progress and
promising new directions for future research in stateful network
protocol fuzzing.

II. BACKGROUND AND MOTIVATION

A. Motivating Example: File Transfer Protocol (FTP)

We begin with an informal introduction of the main concepts
behind server communication and the terminology we are using
in this paper. A server is a software system that can be accessed
remotely, e.g., via the Internet. A client is a software system
that uses the services which are provided by a server. In order
for the client to use the services of a server, the client must first
establish a connection via a communication channel. A network
socket is an endpoint for sending or receiving data and can be
identified by an IP address and a port.

In order to exchange information, both network participants
send messages. A message is a distinct data packet. A message
sequence is a vector of messages. A valid order of messages is
governed by a protocol. The protocol provides strict rules and
regulations that determine how data is transmitted and ensures
reliable communication between client and server. A message
from the client is also called request while a message from the
server is called response3. Each request may advance the server
state, e.g., from initial state to authenticated. The server state
is a specific status of the server in the communication with the
client.

Listing 1 shows an exchange of messages according to the
File Transfer Protocol (FTP) between a client and LightFTP
[19], a server that implements FTP and is one of the sub-
jects in our evaluation. The message sequence sent from the
client is highlighted in red. FTP is the standard protocol for
transferring files (RFC959 [20]). FTP specifies that a client
must first authenticate itself at the server. Only after successful
authentication can the client issue other commands (i.e., transfer
parameter commands and service commands). For each request
message from the client, the FTP server replies with a response

3In some protocols, e.g., mutual authentication in TLS, when the client is
authenticating its identity to the server, the request comes from the server.

https://github.com/aflnet/aflnet
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Listing 1. Message exchange between an FTP client (red) and the LightFTP
server (black) on the control channel.

1 220 LightFTP server v2.0a ready
2 USER foo
3 331 User foo OK. Password required
4 PASS foo
5 230 User logged in, proceed.
6 MKD demo
7 257 Directory created.
8 CWD demo
9 250 Requested file action okay, completed.

10 STOR test.txt
11 150 File status okay
12 226 Transfer complete
13 LIST
14 150 File status okay
15 226 Transfer complete
16 QUIT
17 221 Goodbye!

message containing a status code (e.g., 230 [login successful] or
430 [invalid user/pass]). The status code in the response ensures
that client requests are acknowledged and informs the client
about the current server state.

Finding vulnerabilities in protocol implementations is chal-
lenging. First, a server is stateful and message-driven. It takes
a sequence of messages (e.g., messages shown in Listing 1 in
red) from a client, handles the messages, and sends appropriate
responses. In addition, a server features a massive state space
that can be traversed effectively only with specific sequences
of messages. For example, only after accepting the correct
user name and password (i.e., USER foo and PASS foo),
LightFTP can transition to the state where it can process the
MKD demo command. Second, a server’s response depends on
both, the current message and the current internal server state
which is controlled by a sequence of earlier messages.

B. Difficulties of Traditional Fuzzing Approaches

To find vulnerabilities in stateful protocols, there are sev-
eral challenges for state-of-the-art fuzzing approaches, like
coverage-based greybox fuzzing (CGF) [13], [15] and stateful
blackbox fuzzing (SBF) [1], [17]. The details of each approach
and their corresponding limitations are listed in Table I. CGF
is an effective automated vulnerability detection technique.
It leverages code coverage information, obtained by lightweight
code instrumentation, to retain and prioritize interesting seeds
(e.g., input files) generated by mutation operators (e.g., bit flips
and splicing) in an evolutionary fashion. However, vanilla CGF,
like AFL and its extensions [14], [4], [3], neither know the
server state information nor the required structure or order of
the messages to be sent. These CGF were mainly designed to
test stateless programs (e.g., file processing programs) which
always produce the same output for the same input. No state is
maintained or taken into account.

Developers only have workaround solutions to fuzz protocol
implementations using current CGF approaches. They would
need to write test harnesses for unit testing of specific program
states of the server under test (SUT) [15] or to concatenate
message sequences into files and use them as seeds to do

normal mutational file fuzzing [13]. These two approaches have
several drawbacks. While unit testing is effective at some spe-
cific program states, it may not be able to thoroughly test the
interactions/transitions between several program states. More-
over, it usually requires a substantial effort to write a new test
harness to maintain correct program states and avoid false posi-
tives. Importantly, it is not applicable for end-to-end fuzzing to
test the whole server whose source code may not be available.

Working on concatenated files leads to inefficiency and in-
effectiveness in bug finding. First, for each fuzzing iteration,
the whole selected seed file needs to be mutated. Given a file f
which is constructed by concatenating a sequence of messages
from m1 to mn, CGF mutates the whole file f and treats all
messages equally. Suppose a message mi is the most interest-
ing one (e.g., exploring it leads to higher code coverage and
potential bugs), CGF repeats mutating uninteresting messages
m1 to mi-1 before working on mi and it has no knowledge to
focus on mi. Second, lacking state transition information, CGF
could produce many invalid sequences of messages which are
likely to be rejected by the SUT.

Due to the aforementioned limitations of CGF on stateful
server fuzzing, the most popular technique is still stateful black-
box fuzzing (SBF). Several SBF tools have been developed in
both academia (e.g., Sulley, BooFuzz [18], [17]), and in the
industry (e.g., Peach, beSTORM [1], [16]). These tools traverse
a given protocol model, in the form of a finite state machine
or a graph, and leverage data models/grammars of messages
accepted at the states to generate (syntactically valid) message
sequences and stress test the SUT. However, their effectiveness
heavily depends on the completeness of the given state model
and data model, which are normally written manually based
on the developers’ understanding of the protocol specification
and the sample captured network traffic between the client and
the server. These manually provided models may not capture
correctly the protocols implemented inside the SUT. Protocol
specifications contain hundreds of pages of prose-form text.
Developers of implementations may misinterpret existing or
add new states or transitions. Moreover, like other blackbox
approaches, SBF does not retain interesting test cases for further
fuzzing. More specifically, even though SBF could produce test
cases leading to new interesting states, which have not been
defined in its state model, SBF does not retain those for further
explorations. It also does not update the state model at run-time.

To address the aforementioned limitations of current CGF
and SBF approaches, we introduce AFLNET–the first stateful
CGF (SCGF) tool. AFLNET is an evolutionary mutation-based
fuzzer that leverages code as well as state feedback to efficiently
and systematically explore the code and state space of a protocol
implementation. In our setting, AFLNET acts as a client while
the protocol server acts as the fuzz target. AFLNET makes au-
tomated state model inferencing and coverage-guided fuzzing
work hand in hand; fuzzing helps to generate new message
sequences to cover new states and make the state model grad-
ually more complete. Meanwhile, the dynamically constructed
state model helps to drive the fuzzing towards more important
code parts by using both the state coverage and code coverage
information of the retained message sequences.
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TABLE I
LIMITATIONS OF TRADITIONAL FUZZING APPROACHES IN FINDING VULNERABILITIES IN STATEFUL PROTOCOLS

Approach Description Representative Tools Limitations

Coverage-guided
greybox fuzzing
(CGF)

Leverage code coverage information
to retain and prioritize interesting
seeds generated by mutation operators

AFL [13] and its exten-
sions [14], [4], [3]

Neither know the server state information nor the
required message structure or order to be sent

Workaround
solutions of
coverage-guided
greybox fuzzing

(1) Write test harness for unit testing
of specific program states of the
server under test (SUT);
(2) Concatenate message structures
into files and use them as seeds to do
normal mutational file fuzzing

For (1), libFuzzer [15];
For (2), AFL [13]

For (1), cannot thoroughly test the interactions /
transitions between several program states; requires
substantial manual effort to write a correct test
harness; and cannot test the whole server whose
source code is not available;
For (2), inefficiency and ineffectiveness in bug finding
due to no knowledge of which message to focus on
and no state transition information

Stateful blackbox
fuzzing (SBF)

Traverse the given protocol model
and leverage data models/grammars
of messages to generate message se-
quences from scratch

beSTORM [16], Boo-
Fuzz [17], Peach [1]
and Sulley [18]

Writing state models and data models involves much
manual effort and expertise, which are also often
error-prone; and learn nothing from past fuzzing ex-
ecution

III. THE AFLNET APPROACH

AFLNET is a network-enabled stateful greybox fuzzer that
leverages additional state feedback from the server along with
the code feedback to boost the coverage of a protocol imple-
mentation. Algorithm 1 provides a procedural overview. The in-
put is the server program under test P , an initial (potentially
empty) draft of the implemented protocol state machine (IPSM)
S, and the actual, recorded network traffic T between a client
and P . The traffic T can be recorded traces from multiple ses-
sions. The output is a set of error-revealing message sequences
C✗ and the IPSM S that has been augmented throughout the
fuzzing campaign.

AFLNET starts with a pre-processing phase (Lines 1–6).
Given the server P , the initial IPSM S, and the recorded net-
work traffic T , AFLNET constructs the initial seed corpus C and
adds state transitions observed in T to S. In order to construct
C, each trace t ∈ T of recorded network traffic is parsed into
the corresponding message sequence M , which is then added
to C and sent to the server P . The details of the recording and
replay of message sequences (incl. the parse and send methods)
are discussed in Section III-A. From each server response R, the
exercised state transitions are extracted. States and transitions
that have been observed are added to the IPSM S if they do
not already exist. If no IPSM is given as input, S is initialized
as a directed graph without nodes and edges. Our lightweight
protocol learning (incl. the updateIPSM method) is elaborated
in Section III-B.

In each iteration (Lines 8–26), AFLNET generates several
new sequences based on the selected seed sequence. Dur-
ing seed selection, AFLNET interleaves AFL’s original strat-
egy, which relies on the order of the seed queue (Lines
14–15), with a strategy based on the state heuristics in the
IPSM S (Lines 10–12). Specifically, AFLNET starts lightweight
seed selection based on the seed queue, and switches to the
heavy state-heuristic-based strategy when the fuzzer cannot find
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Fig. 3. An annotated FTP message sequence processed for mutational
fuzzing (from the sniffer trace in Listing 1).

“interesting” sequences within the allowed time gap. The for-
mer strategy is the same as that used in AFL. In the latter seed-
selection strategy, AFLNET selects a progressive state s ∈ S and
a sequence M ∈ C exercising s to steer the fuzzer towards more
progressive regions in the server state space (Section III-C; incl.
choose_state and choose_sequence_to_state).

The selected sequence is assigned an amount of energy
based on the default power schedule of the greybox fuzzer
[14] and systematically mutated (Section III-D; incl. mutate
and is_interesting). Crash-triggering sequences are added to the
crashing corpus C✗, “interesting” sequences are added to the
normal corpus C, and all other generated sequences are dis-
carded (Line 19–25). A sequence M is considered as interesting
if the new state(s) or state transition(s) have been observed in
the server response R for M, or if M covers new branches in the
server’s source code.

A. Recording and Replay for Fuzzing

In order to facilitate mutational fuzzing for message se-
quences, we first need to develop the capability to record and
replay message sequences. In order to record a realistic mes-
sage exchange between the client and the server, a network
sniffer can be used. A network sniffer captures network traf-
fic for a specified period of time. For instance, we can use
tcpdump4 to capture the traffic from a user-generated FTP
session. The sniffer records the entire network traffic that can
be filtered automatically. The relevant message exchange can
be extracted using a packet analyzer. A packet analyzer can
identify and distinguish different message exchanges between
different nodes in the network. For instance, we used the packet
analyzer Wireshark5 to automatically extract the sequence of
FTP requests.

To generate the initial corpus of message sequences C,
AFLNET parses the filtered sniffer traces T (i.e., parse in Al-
gorithm 1). The objective of the parser is to identify the start
and end of a message in the filtered trace. This can be done
with a packet analyzer such as Wireshark. In our case, we
implemented a lightweight method that finds the header and
terminator of a message as specified in the given protocol. For
instance, each FTP message starts with a valid FTP command
(e.g., USER, PASS) and is terminated with a carriage return
followed by a line feed character (i.e., 0x0D0A). Moreover,
AFLNET associates with each message in the sequence the
corresponding server state transitions (cf. Fig. 3). This is done
by sending the messages and parsing the responses one by one.

To replay a message sequence (i.e., send in Algorithm 1),
AFLNET acts as a client. In our setting, the server provides
network sockets and the fuzzer can connect to those. After the

4https://www.tcpdump.org/pcap.html
5https://www.wireshark.org/

server is started and the connection is established, AFLNET

can proceed to replay message sequences. For each request
m in the sequence, (i) the request m is sent to the server,
(ii) a delay is introduced, and (iii) the response is received.
The delay is required because many servers (incl. the LightFTP
server) stop the message exchange if a new request arrives
before the server’s response has been received. When the entire
sequence is executed, the connection is closed, and the server
is terminated. We suggest terminating the server (or at least the
ongoing session) because this will reset any accumulated state.
The next message sequence can start from the same initial state.

B. Lightweight Protocol Learning

We refer to the directed labelled graph which reconciles all
state transitions that have been observed throughout the fuzzing
campaign as the implemented protocol state machine (IPSM).
Each node represents a state. Each directed edge represents
a state transition. The edge is annotated with a request and
response message. If there is an edge between two states s1 and
s2, and the server is currently in state s1 and receives a request
that matches the one in the edge label, then the server sends a
response that matches the one in the edge label and transitions
to state s2. An example illustrating the utility of the IPSM is
shown in Fig. 2.

The IPSM represents the current and potentially incomplete
view of the protocol state machine that has actually been im-
plemented. The purpose of the fuzzer is to generate message
sequences that discover new state transitions. This in turn itera-
tively increases the completeness of the IPSM w.r.t. actual state
machine.

After sending a request sequence M ∈ C, the network-
enabled fuzzer receives a response sequence R. From R,
AFLNET extracts the sequence of state transitions. We assume
determinism, i.e., executing M several times always produces
the same sequence of state transitions. Each state should be
uniquely identifiable. For many protocols, the response contains
information about the current server state. For instance, we
can use the FTP status code in the server response to quickly
identify the server state (e.g., 230 [login successful]). If no (de-
tailed) state information is normally available in R, we suggest
to instrument the program such that the server function that
handles a certain state also prints the associated state ID. Such
instrumentation is sensible when fuzzing in-house or open-
source protocol implementations.

In order to augment the IPSM S (cf. updateIPSM in Algo-
rithm 1), the nodes and edges are added for states and state
transitions that have not been observed previously (i.e., before
sending m ∈M ). For each existing or new state s ∈ S, AFLNET

records the number of times a mutated message sequence has
executed s (#fuzz), the number of times s has been se-
lected for fuzzing (#selected), and the number of coverage-
increasing message sequences that have been added to C after
selecting s for fuzzing (#paths). This statistical information
is used for steering the fuzzer towards more progressive regions
of the state space. In turn, the boosted fuzzer should enable a
more efficient augmentation of the IPSM.

https://www.tcpdump.org/pcap.html
https://www.wireshark.org/
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C. Steering the Fuzzer to Progressive States

In order to steer the fuzzer towards more progressive regions
in the state space, AFLNET chooses message sequences M ∈
C to mutate that exercise one of the more progressive states
and that is more likely to increase coverage (Lines 10–12 in
Algorithm 1).

Choosing a state. In each iteration, AFLNET selects a server
state s ∈ S in the IPSM S to focus on (cf. choose_state in
Algorithm 1). AFLNET uses several heuristics that can be com-
puted from the statistical data available in the learned IPSM. To
identify fuzzer blind spots, i.e., rarely exercised states, AFLNET

chooses a state s with a probability that is inversely propor-
tional to the proportion of mutated message sequences that
have executed s (#fuzz). AFLNET chooses recently discovered
states s with higher priority by prioritizing states that have been
rarely chosen for fuzzing (#selected). In order to maximize
the probability of discovering new state transitions, AFLNET

chooses a state s with higher priority that has been particularly
successful in contributing to an increased code or state coverage
when they were previously selected (#paths).

Choosing a message sequence. In each iteration, given
the selected state s ∈ S, AFLNET selects a message se-
quence M ∈ C from the corpus C that exercises s (cf.
choose_sequence_to_state in Algorithm 1). We leverage the
original selection strategy that is provided by the greybox fuzzer
but on the reduced corpus of sequences that exercise the se-
lected state s. For instance, classically AFL prioritizes shorter
seeds in the corpus that execute quicker. Our modified strategy
first filters only sequences that execute s. Shorter and quicker
sequences that have reached more states are prioritized.

Assigning energy. In greybox fuzzing, the energy of a seed
input determines how many new inputs are generated from the
given seed input the next time it is chosen (cf. energy in Algo-
rithm 1). For instance, the AFL coverage-based greybox fuzzer
[13] assigns more energy to a seed that executes faster and that
is shorter. AFLNET leverages the default power schedule of the
greybox fuzzer. A power schedule is the mechanism that assigns
the energy of a seed.

D. Mutating a Message Sequence

AFLNET is mutation-based fuzzer, i.e., a seed message se-
quence is chosen from a corpus and mutated to generate new se-
quences. There are several advantages over existing generation-
based approaches which generate new message sequences from
scratch. First, a mutation-based approach can leverage a valid
trace of real network traffic to generate new sequences that are
likely valid—albeit entirely without a protocol specification.
In contrast, a generation-based approach [18], [2], [17] requires
a detailed protocol specification, including concrete message
templates and the protocol state machine. Hence, BOOFUZZ

[17], a generation-based approach, does not discover the un-
specified state transition in Fig. 2 in page 2. Second, a mutation-
based approach allows the fuzzer to evolve a corpus of par-
ticularly interesting message sequences. Generated sequences
that have led to the discovery of new states, state transitions, or
program branches are added to the corpus for further fuzzing.

This evolutionary approach is the secret sauce of the tremen-
dous recent success of coverage-based greybox fuzzing.

Given a state s and a message sequence M , AFLNET gen-
erates a new sequence M ′ by mutation (cf. Line 17 in Al-
gorithm 1). In order to ensure that the mutated sequence M ′

still exercises the chosen state s, AFLNET splits the original
sequence M into three parts:

• The prefix M1 is required to reach the selected state s.
The prefix is identified using the state annotations (cf.
Fig. 3). If M = 〈m1, . . . ,mn〉, then M1 = 〈m1, . . . ,mi〉
such that s is observed for the first time when message
mi is sent, i.e. s �∈ states(send(P, 〈m1, ..,mi−1〉)) ∧ s ∈
states(send(P,M1)).

• The candidate subsequence M2 contains all messages
that can be executed after M1 while still remaining
in state s. In other words, M2 is the longest subse-
quence 〈M1,M2〉 ⊆M , such that states(send(P,M1)) =
states(send (P, 〈M1,M2〉)).

• The suffix M3 is simply the left-over subsequence such that
〈M1,M2,M3〉=M .

The mutated message sequence M ′ = 〈M1,mutate(M2),
M3〉. By maintaining the original subsequence M1, M ′ will still
reach the state s which is the state that the fuzzer is currently
focusing on. The mutated candidate subsequence mutate(M2)
produces an alternative sequence of messages upon the progres-
sive state s. In our initial experiments, we observed that the
alternative requests may not be observable “now”, but propagate
to later responses. Hence, AFLNET continues with the execution
of the original suffix M3.

AFLNET offers several protocol-aware mutation operators to
modify the candidate subsequence (cf. mutate in Algorithm 1).
From the corpus C of message sequences, AFLNET produces a
pool of messages. The message pool is a collection of actual
messages from network sniffer traces (plus generated mes-
sages) that can be added or substituted into existing message
sequences M ∈ C. In order to mutate the candidate sequence
M2, AFLNET supports the replacement, insertion, duplication,
and deletion of messages. In addition to these protocol-aware
mutation operators, AFLNET uses the common byte-level op-
erators that are known from greybox fuzzing, such as bit flip-
ping, and the substitution, insertion, or deletion of blocks of
bytes. The mutations are stacked, i.e., several protocol-aware
and byte-level mutation operators are applied to generate the
mutated candidate sequence. The mutations affect the start
and end indices of the mutated and any subsequent message
in the sequence. Hence, the index annotations are updated
accordingly.

E. Selecting Interesting Message Sequences

After applying protocol-aware mutations on the selected
message sequence M , AFLNET generates a new message se-
quence M ′ and sends it to the server under test to investi-
gate whether M ′ is “interesting” (Line 18 in Algorithm 1).
A sequence is considered as interesting if the server response
contains new states or state transitions that have not previously
been observed (i.e., they are not recorded in the IPSM S); a



966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Fig. 4. Architecture and Implementation of Stateful Greybox Fuzzing in AFLNET.

sequence is interesting also if it covers new branches in the
server’s source code.

To select “interesting” message sequences, AFLNET records
both state coverage and branch coverage in the same bitmap B
during program execution. In contrast, AFL only records the
branch coverage in the bitmap. While hitting a branch B1 →
B2, AFL computes the map index using Equation 1 (where
prev_loc and cur_loc are branch keys of the basic block of B1

and B2) and increments the corresponding value for this index
by 1. However, based on our observation, this bitmap often has
many empty entries in the default bitmap size (MAP_SIZE),
which provides the chance to maintain additional state coverage
within the same bitmap as well.

map_index= cur_loc⊕ (prev_loc
 1) (1)

To achieve this, AFLNET shifts the code coverage to the left
of the bitmap by a certain number of elements SHIFT_SIZE,
where SHIFT_SIZE is the number of the bitmap entries re-
served to store state coverage information). The map index for
code branches is then computed using Equation 2.

map_index= (cur_loc⊕ (prev_loc
 1)) % (MAP_SIZE

− SHIFT_SIZE) + SHIFT_SIZE (2)

Following this adjustment, AFLNET reserves the bitmap
space with SHIFT_SIZE many elements to state coverage.
While observing a state transition S1 → S2, AFLNET computes
the map index for this state transition using Equation 3, where
prev_state and cur_state are state keys by numbering raw states
S1 and S2 starting from the number 1, and STATE_SIZE is the
maximum number of states expected to be observed at the end
of fuzzing campaign. The value of the corresponding index is
then incremented by 1.

map_index= (prev_state
 STATE_SIZE + cur_state)

% SHIFT_SIZE (3)

Based on the maintained bitmap, AFLNET selects “interest-
ing” message sequences that hit new bitmap entries or increase
the hit count (cf. is_interesting in Algorithm 1). The interesting
message sequences are saved into the seed corpus C for further
examination (Line 23). Meanwhile (Lines 24–25), AFLNET

updates the states in IPSM S, and the time to find interesting
paths, which facilitates tracking whether AFLNET enters the
coverage plateau.

IV. IMPLEMENTATION

We implemented our prototype AFLNET as an extension of
the popular and successful greybox fuzzer AFL [13], [21].
The architecture of AFLNET is shown in Fig. 4. To facilitate
communication with the server, we first enabled network com-
munication over sockets, which is not supported by the vanilla
AFL. AFLNET supports two channels, one to send and one
to receive messages from the Server Under Test. AFLNET

uses standard C Socket APIs (i.e., connect, poll, send, and
recv)6 to implement this feature. To ensure proper synchro-
nization between AFLNET and the server under test, we added
delays between requests (see Section III-A). Otherwise, several
server implementations drop the connection if a new message
is received before the response is sent and acknowledged. To
minimize the delay, we used the Linux poll API to monitor
the status of both outgoing and incoming buffers. In our exper-
iments, this led to a substantial speed up (3×) compared to a
static delay.

The Request Sequences Parser takes the pcap files con-
taining the captured network traffic and produces the initial
corpus of message sequences (cf. Section III-A). AFLNET uses
protocol-specific information of the message structure to ex-
tract individual requests, in correct order, from the captured
network traffic. In order to reduce the onus on the developer,
AFLNET only requires to specify a mechanism to identify mes-
sage boundaries (i.e., start and end of individual request mes-
sages). For instance, for the four protocols in our evaluation,
we implemented the method to extract request sequences (and
to parse the state information from the server responses) into
only 200 lines of C code.

The State Machine Learner takes the server responses
and augments the implemented protocol state machine (IPSM)
with newly observed states and transitions. AFLNET reads the
server response into a byte buffer, extracts the status code as
specified in the protocol, and determines the executed state
(transitions). To represent the IPSM, AFLNET uses the Graphviz
graph libary7 and the Collections-C8, which supports high-
level data structures like HashMap and List. These libraries

6http://man7.org/linux/man-pages/man2/socket.2.html
7https://www.graphviz.org/pdf/libguide.pdf
8https://github.com/srdja/Collections-C

http://man7.org/linux/man-pages/man2/socket.2.html
https://www.graphviz.org/pdf/libguide.pdf
https://github.com/srdja/Collections-C
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Fig. 5. Learning example of the implemented protocol state machine (IPSM)
from the LightFTP Server.

are used to construct the state machine, and associate state-
specific information. The GraphViz library can render the entire
state machine as an image file. This allows users of AFLNET

to understand intuitively the fuzzer progress in terms of the
coverage of the state space.

The Target State Selector takes information from the IPSM
to select the state that AFLNET should focus on next. AFL im-
plements the seed corpus (here, containing message sequences)
as a linked list of queue entries. A queue entry is the data
structure containing pertinent information about the seed input.
In addition, AFLNET maintains a state corpus which consists
of (i) a list of state entries, i.e., a data structure containing
pertinent state information, and (ii) a hashmap which maps a
state identifier to a list of queue entries exercising the state
corresponding to the state identifier. Both the target state se-
lector and the Sequence Selector leverage the state corpus.
The Sequence Mutator augments AFL’s fuzz_one method
with protocol-aware mutation operators.

Now we illustrate how all these components of AFLNET work
together to fuzz the LightFTP server. Suppose AFLNET starts
with only one pcap file containing the network traffic as shown
in Listing 1. First, Request Sequence Parser parses the pcap
file to generate a single sequence (as visualized in Fig. 3) and
saves it into the corpus C. At the same time, State Machine
Learning constructs the initial IPSM based on the response
codes; this initial IPSM contains black nodes and transitions
in Fig. 5. Suppose that Target State Selector selects state
331 (“USER foo OK”) as the target state. Sequence Selec-
tor will then randomly select a sequence from the sequence
corpus C, which contains only one sequence at this moment.
Afterward, Sequence Mutators identifies the sequence pre-
fix (“USER foo” request), the candidate subsequence (“PASS
foo” request), and the remaining subsequence as the suffix.
By mutating the candidate subsequence using stacked mutators,
Sequence Mutators may generate a wrong password request
(“PASS bar”) leading to an error state (530 Not logged
in). Following this wrong password, it replays the suffix (e.g.,
“MKD demo”, “CWD demo”) leading to a loop in the state 530
because all these commands are not allowed before successful
authentication. Finally, the “QUIT” request is sent, and the
server exits. Since the generated test sequence (as visualized
in Fig. 6) covers new state and state transitions (as highlighted
in red in Fig. 5), it is added into the corpus C and the IPSM.

V. EVALUATION

This evaluation seeks to analyze the contribution of each
algorithmic component embedded within AFLNET. To this

Fig. 6. A sample mutated sequence if the state 331 (User OK) and the
message sequence in Fig. 3 have been chosen.

end, we design three research questions to be covered in the
following:
RQ.1: How effective is state feedback alone in guiding

the fuzzing campaign? This research question aims
to evaluate whether state feedback alone is effective
in guiding the fuzzing campaign when code feedback
is unavailable. We seek to measure this performance
and examine the potential for extending AFLNET to
scenarios such as fuzzing remote servers.

RQ.2: Can state feedback enhance the fuzzing effective-
ness alongside code feedback? This research question
aims to evaluate the extent to which fuzzing effective-
ness can be improved by incorporating additional state
feedback. We expect the fuzzer to cover more code with
the inclusion of state feedback.

RQ.3: What is the impact of different seed-selection strate-
gies? In the default configuration, AFLNET adopts an
interleaving seed-selection strategy that alternates be-
tween the order in the seed queue and the state heuris-
tics. This research question aims to evaluate the impact
of this interleaving strategy compared to the seed selec-
tion based on a single source.

To answer these questions, we follow the recommended ex-
perimental design for fuzzing experiments [22], [23].

Benchmark. We selected the subjects from PROFUZZBENCH

[12] as our benchmark. PROFUZZBENCH is a widely-used
benchmarking platform for evaluating stateful fuzzers of net-
work protocols [24], [25], [26], [27]. PROFUZZBENCH com-
prises a suite of mature and open-source programs that imple-
ment well-known network protocols (e.g., SSH and FTP). In ad-
dition, it integrates a set of protocol fuzzing tools, including
AFLNET. Our experiments were conducted on PROFUZZBENCH

using the default versions of these subjects.
Performance Metrics and Measures. For each experiment,

we report both code coverage and state space coverage. The key
idea is that a bug cannot be exposed in uncovered code or
states. To evaluate code coverage, we measure the branch cov-
erage achieved using the automated tooling provided by the
benchmarking platform PROFUZZBENCH [12]. To evaluate the
coverage of the state space, we measure the number of state
transitions constructed in the protocol state machine IPSM.
Additionally, we use the Vargha-Delaney effect size (Â12) to
measure the statistical significance of the comparison results be-
tween two independent groups, which in our case are AFLNET

and its variants.
Experimental Configuration and Infrastructure. We con-

ducted all the experiments using the Git commit 62d63a5
of AFLNET. The SHIFT_SIZE parameter was set to half of
the bitmap size, reserving one-half of the bitmap space for
state coverage and the other half for code coverage. We set
STATE_SIZE to 256 based on our observations from our
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Fig. 7. Code branch covered over time by AFLNET, AFLNETDARK and AFLNETBLACK across 10 runs of 24 hours on the PROFUZZBENCH subjects.

preliminary experiments. All experiments were run on an Intel®
Xeon® Platinum 8468V CPU with 192 logical cores clocked
at 2.70GHz, 512GB of memory, and running Ubuntu 22.04.3
LTS. Each experiment runs for 24 hours. We report the average
results over 10 runs to mitigate the impact of randomness.

RQ.1 Effectiveness of State Feedback alone

To evaluate the effectiveness of state feedback alone in guid-
ing the fuzzing campaign, we developed two additional invari-
ant tools of AFLNET for comparison:

• AFLNETDARK: a dark-box version of AFLNET with only
state feedback enabled,

• AFLNETBLACK: a black-box version of AFLNET with both
code and state feedback disabled.

In this experiment, AFLNETDARK is our focus, AFLNET-
Black serves as the baseline, and AFLNET represents the target
that AFLNETDARK aims to achieve.

Fig. 7 shows the trends in average code coverage over
time for AFLNET, AFLNETDARK and AFLNETBLACK. Overall,
state feedback alone had no negative impact on code coverage
across all subjects. With the guidance from state feedback,
AFLNETDARK significantly outperformed AFLNETBLACK in
terms of code coverage in 6 of the 12 PROFUZZBENCH sub-
jects (i.e., Bftpd, DNSmasq, Kamailio, LightFTP, ProFTPD and
Pure-FTPd). In particular, in the subject Bftpd, AFLNETDARK

even performed similarly to AFLNET. In the subjects OpenSSH
and TinyDTLS, although AFLNETDARK only slightly improved
the number of code branches covered at the end of the fuzzing
campaign, it achieved the same branch number approximately
6× and 4× faster than AFLNETBLACK, respectively, which
can obviously reduce the fuzzing time. Unfortunately, for other

subjects (i.e., DCMTK, Exim, forked-daapd, and Live555),
there was almost no difference in code coverage between
AFLNETDARK and AFLNETBLACK.

To investigate the reason for this difference, we collected
the state number of all subjects at the end of the fuzzing
campaign. It is interesting to note that for the subjects
where AFLNETDARK did not outperform AFLNETBLACK, the
state numbers were also lower compared to those where
AFLNETDARK showed better performance. For example, the
state number of the subject DCMTK is 3, while there are 334
states observed for the subject Bftpd. This result is expected, as
an insufficient number of states is inadequate for guiding the
fuzzing campaign, leading to a similar performance between
AFLNETDARK and AFLNETBLACK. Therefore, we conclude
that state feedback alone is effective in guiding the fuzzing cam-
paign, provided there is a reasonable number of states to offer
guidance. When code feedback is unavailable, state feedback is
a fallback guidance for improving code coverage.

State feedback alone is effective in guiding the fuzzing cam-
paign when the state number is reasonable.

RQ.2 Effectiveness of Additional State Feedback

In this experiment, we examined whether a fuzzer with addi-
tional state guidance could outperform one with only code guid-
ance. For this purpose, we compared two variants of AFLNET:

• AFLNETCODE: a variant AFLNET with only code feed-
back,

• AFLNETQUEUE: a variant AFLNET with both code and
state feedback.
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TABLE II
AVERAGE BRANCH COVERAGE AND AVERAGE STATE COVERAGE ACROSS 10 RUNS OF 24 HOURS ACHIEVED BY AFLNETQUEUE

COMPARED TO AFLNETCODE

Subject
Code Coverage Comparison State Coverage Comparison

AFLNETCODE AFLNETQUEUE Improv Â12 AFLNETCODE AFLNETQUEUE Improv Â12

Bftpd 484.8 491.5 +1.38% 0.72 170.5 334.0 +0.96× 1.00
DCMTK 3076.6 3086.3 +0.32% 0.56 3.0 3.0 0.00× 0.50
DNSmasq 1221.0 1217.6 -0.28% 0.43 282.5 27364.0 +95.85× 1.00
Exim 2847.7 2862.7 +0.53% 0.46 61.6 75.7 +0.23× 1.00
forked-daapd 2384.9 2401.3 +0.69% 0.54 22.0 37.7 +0.71× 1.00
Kamailio 9800.2 9752.4 -0.49% 0.43 89.2 300.3 +2.37× 1.00
LightFTP 355.8 347.2 -2.42% 0.21 179.0 388.7 +1.17× 1.00
Live555 2809.8 2818.5 +0.31% 0.53 75.1 87.9 +0.17× 1.00
OpenSSH 3336.7 3300.0 -1.10% 0.20 93.5 30480.9 +325.00× 1.00
ProFTPD 5296.4 5309.6 +0.25% 0.55 250.6 473.5 +0.89× 1.00
Pure-FTPd 1268.0 1277.1 +0.72% 0.45 292.1 420.2 +0.44× 1.00
TinyDTLS 574.4 575.7 +0.23% 0.50 30.5 37.5 +0.23× 1.00

Average - - +0.01% - - - +35.67× -

Both AFLNETQUEUE and AFLNETCODE select interesting seeds
based on the test order in the corpus queue. We did not in-
clude the original AFLNET for comparison because it uses an
interleaving strategy between the seed-queue order and the
state heuristics to select interesting seeds. Since this experiment
specifically focuses on the impact of additional state guidance,
we developed the invariant fuzzer AFLNETQUEUE to eliminate
the influence of seed-selection strategies.

Table II shows the average number of code branches and
states covered by AFLNETQUEUE and AFLNETCODE across
all subjects. To quantify the improvement of AFLNETQUEUE

over AFLNETCODE, we report the percentage improvements
in terms of code coverage and state coverage achieved in 24
hours, respectively (Improv), as well as the possibility that a
random campaign of AFLNETQUEUE outperforms a random
campaign of AFLNETCODE (Â12). We consider the Vargha-
Delaney effect size Â12 ≥ 0.71 or Â12 ≤ 0.29 to indicate a
substantial advantage of AFLNETQUEUE over AFLNETCODE, or
vice versa.

In the aspect of code coverage, the additional state feed-
back in AFLNETQUEUE had a mixed impact when compared to
AFLNETCODE, which uses only code feedback. AFLNETQUEUE

outperformed AFLNETCODE in 8 out of 12 subjects, with
only 1 subject (i.e., LightFTP) showing statistically significant
improvement. In contrast, for the remaining 4 subjects, the
additional state feedback had a negative impact on the code
coverage, although only in the subjects LightFTP and OpenSSH
in a statistically significant way. Overall, while additional state
coverage can slightly improve code coverage for most subjects,
this improvement is not statistically significant (7 out of the 12
subjects).

In the aspect of state coverage, AFLNETQUEUE covered
35.67× more states on average. For nearly all subjects (except
the subject DCMTK), the Vargha-Delaney effect size Â12 =
1.00 indicates a substantial advantage of AFLNETQUEUE over
AFLNETCODE in exploring state space. In addition, it is worth
noting that some subjects (e.g., DCMTK and forked-daapd)

only exhibited a small number of observed states. It is expected
that this sparse feedback is not effective in improving the code
coverage. Conversely, the results for DNSmasq and OpenSSH
suggest that overly dense feedback can also be ineffective.
Overall, there is no correlation between the number of states
observed and the improvements in code coverage.

These experimental results demonstrate that additional state
feedback can effectively guide the fuzzer to explore more states.
The additional state guidance did show significant effectiveness
in improving the code coverage, and it also has no obvious
harm on most subjects (i.e., 10 out of 12 subjects). A possible
explanation is that AFLNET considers response codes from a
server as the representation of states; however, this may not be
a good state definition for each subject, as noted by the follow-
up works of AFLNET [28], [26].

Additional state feedback, as defined by AFLnet, can ef-
fectively guide the fuzzer to explore a larger state space.
However, it does not result in significant improvement in
code coverage.

RQ.3 Impact of Seed-Selection Strategies

To evaluate the impact of seed-selection strategies, we com-
pare AFLNET with two alternative implementations:

• AFLNETQUEUE: a variant AFLNET that selects interesting
seeds only based on the order of the seed queue,

• AFLNETIPSM: a variant AFLNET that selects interesting
seeds only based on the state heuristics.

AFLNET selects interesting seeds using an interleaving strategy
between the order of the seed queue and the state heuristics. All
these tools are configured with both code- and state- feedback.
We compare three tools in terms of the code coverage and the
state coverage.

Table III shows the average code branches covered by
AFLNET, AFLNETQUEUE and AFLNETIPSM across 10 runs
of 24 hours. In addition, we report the improvement in the
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TABLE III
AVERAGE BRANCH COVERAGE ACROSS 10 RUNS OF 24 HOURS ACHIEVED BY AFLNET

COMPARED TO AFLNETQUEUE AND AFLNETIPSM

Subject AFLNET
Comparison with AFLNETQUEUE Comparison with AFLNETIPSM
AFLNETQUEUE Improv Â12 AFLNETIPSM Improv Â12

Bftpd 487.0 491.5 -0.92% 0.23 486.6 +0.08% 0.47
DCMTK 3120.4 3086.3 +1.10% 0.95 3113.7 +0.22% 0.70
DNSmasq 1202.5 1217.6 -1.24% 0.00 1194.9 +0.64% 0.70
Exim 2922.0 2862.7 +2.07% 0.36 2888.8 +1.15% 0.80
forked-daapd 2329.9 2401.3 -2.97% 0.13 2279.4 +2.22% 0.80
Kamailio 9899.4 9752.4 +1.51% 0.97 9824.6 +0.76% 0.68
LightFTP 346.6 347.2 -0.16% 0.33 345.5 +0.32% 0.62
Live555 2808.1 2818.5 -0.37% 0.41 2780.5 +0.99% 0.75
OpenSSH 3353.8 3300.0 +1.63% 0.82 3341.4 +0.37% 0.65
ProFTPD 5324.2 5309.6 +0.27% 0.58 5150.5 +3.37% 0.89
Pure-FTPd 1167.5 1277.1 -8.58% 0.00 1075.4 +8.56% 0.96
TinyDTLS 583.8 575.7 +1.41% 0.79 577.5 +1.09% 0.76

Average - - -0.52% - - +1.65% -

code coverage of AFLNET compared to AFLNETQUEUE and
AFLNETIPSM, respectively (Improv), and the Vargha-Delaney
effect size (Â12). Compared to the seed-selection strategy based
on queue order (i.e., AFLNETQUEUE), the interleaving seed-
selection strategy (i.e., AFLNET) performed significantly better
in some subjects (i.e., DCMTK, Kamailio, OpenSSH, and Tiny-
DTLS). However, it underperformed in the subjects DNSmasq,
forked-daapd, and Pure-FTPd. In the remaining subjects, both
seed-selection strategies had similar performance. Compared to
the strategy based on the state heuristics (i.e., AFLNETIPSM),
the interleaving strategy consistently performed better although
the improvement was not statistically significant in some sub-
jects (e.g., Bftpd).

Table IV shows the state coverage of AFLNET,
AFLNETQUEUE and AFLNETIPSM in a similar format to
our previous table. Overall, AFLNET outperformed both
baseline tools AFLNETQUEUE and AFLNETIPSM in terms
of state coverage. AFLNET covered 5.77% more states than
AFLNETQUEUE, and 12.77% more states than AFLNETIPSM
on average. Although AFLNET covers fewer states than
AFLNETIPSM or AFLNETQUEUE in the subjects Bftpd,
LightFTP, and TinyDTLS, this underperformance is not
significant given the values of Â12.

Considering both aspects of code coverage and state cover-
age, AFLNET is the best performer among the comparison tools
across all subjects. Therefore, the interleaving seed-selection
strategy is generally the best configuration while testing most
subjects. However, if the primary goal is to maximize code cov-
erage, users might consider configuring the fuzzer with a seed-
selection strategy based solely on queue order, as suggested
by the comparison between AFLNET and AFLNETQUEUE. On
the other hand, if maximizing state coverage is the objective,
the interleaving seed-selection strategy is undoubtedly the best
choice.

In addition, it is interesting to note that there is no obvious
correlation between state coverage and code coverage. A fuzzer
that covers more states does not necessarily mean it would

cover more code as well, as demonstrated in some subjects (e.g.,
DNSmasq, forked-daapd, and Pure-FTPd).

The fuzzer configured with interleaving seed-selection strat-
egy outperforms selecting interesting seeds based only on
queue order or state heuristics.

VI. RECENT PROGRESS IN STATEFUL FUZZING

AFLNET has significantly advanced fuzzing techniques for
network protocols. During the fuzzing campaign, AFLNET acts
as the client application, establishing real network connections
with the server under test and then exchanging messages. This
approach follows the real-world architectures of network pro-
tocols, reducing the manual effort of understanding network
protocols and modifying source codes. AFLNET is widely re-
garded as an optimal choice for network protocol fuzzing9, and
has uncovered numerous critical vulnerabilities in widely-used
protocol implementations. However, it also has several short-
comings that the research community has actively addressed,
leading to enhancements in various aspects.

What is a state? Considering state feedback and optimizing
state coverage is a key contribution of AFLNET. Yet, what do we
consider as the current “state” and how do we identify it? In the
default setting, AFLNET uses the response code extracted from
the response message to represent the current protocol state.
However, the response code is a very coarse representation of
states. As demonstrated in our previous experiment, this state
representation does not significantly improve code coverage.
In addition, the response codes are not always available in
response messages.

To address this limitation, a series of works have proposed al-
ternative state representations. SGFUZZ [28] uses the sequence

9https://github.com/AFLplusplus/AFLplusplus/blob/stable/docs/
best_practices.md#fuzzing-a-network-service

https://github.com/AFLplusplus/AFLplusplus/blob/stable/docs/best_practices.md#fuzzing-a-network-service
https://github.com/AFLplusplus/AFLplusplus/blob/stable/docs/best_practices.md#fuzzing-a-network-service
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TABLE IV
AVERAGE STATE COVERAGE ACROSS 10 RUNS OF 24 HOURS ACHIEVED BY AFLNET

COMPARED TO AFLNETQUEUE AND AFLNETIPSM

Subject AFLNET
Comparison with AFLNETQUEUE Comparison with AFLNETIPSM
AFLNETQUEUE Improv Â12 AFLNETIPSM Improv Â12

Bftpd 334.3 334.0 +0.09% 0.57 335.0 -0.21% 0.37
DCMTK 3.0 3.0 0.00% 0.50 3.0 0.00% 0.50
DNSmasq 32256.5 27364.0 +17.88% 1.00 26982.2 +19.55% 1.00
Exim 69.1 75.7 -8.72% 0.45 66.0 +4.70% 0.51
forked-daapd 43.2 37.7 +14.67% 1.00 39.0 +10.85% 1.00
Kamailio 313.0 300.3 +4.23% 0.89 235.2 +33.10% 0.70
LightFTP 380.4 388.7 -2.14% 0.46 375.9 +1.20% 0.58
Live555 91.7 87.9 +4.32% 0.57 89.3 +2.69% 0.69
OpenSSH 35433.5 30480.9 +16.25% 1.00 30943.6 +14.51% 1.00
ProFTPD 476.0 473.5 +0.53% 0.59 359.9 +32.26% 1.00
Pure-FTPd 521.2 420.2 +24.05% 1.00 463.8 +12.39% 1.00
TinyDTLS 36.8 37.5 -1.87% 0.46 30.1 +22.26% 0.74

Average - - +5.77% - - +12.77% -

of values assigned to state variables (identified as enum type
variables) to represent the sequence of protocol states corre-
sponding to a message sequence. Similarly, NSFUZZ [26] in-
troduces a variable-based state representation to infer states
of network protocols. STATEAFL [27] infers protocol states
by taking snapshots of long-lived memory areas. Utilizing the
recent advances in large language models (LLMs), CHATAFL
[24] uses LLMs to infer states based on exchanged messages.
These approaches effectively address the challenge of state
identification in AFLNET.

How to maximize state coverage? AFLNET provides three
seed-selection (line 10 of Algorithm 1) algorithms: FAVOR,
RANDOM, and ROUND-ROBIN, with FAVOR being the de-
fault configuration. The FAVOR algorithm prioritizes states that
are rarely exercised, giving them more chances to be tested.
The RANDOM algorithm selects states randomly, while the
ROUND-ROBIN algorithm maintains states in a circular queue
and selects them in turns. However, as shown by Liu et al. [29],
these three algorithms yield similar results in terms of code
coverage.

Subsequent works have sought to propose more principled
approaches to state selection. Borcherding et al. [30] model
state selection as a Multi-armed Bandit Problem. Unfortunately,
the authors found that this approach prevents the fuzzer from
reaching deeper states, resulting in worse code coverage com-
pared to AFLNET. AFLNETLEGION [29] introduces a novel
seed-selection algorithm to AFLNET based on LEGION [31], a
variant of Monte Carlo tree search. However, the performance
improvements of AFLNETLEGION turn out to be not statistically
significant. We believe that this is explained by the low fuzzing
throughput of baseline AFLNET, which hinders the full potential
of this systematic algorithm. Once this challenge is resolved,
it is worthwhile to explore other heuristics that have shown
promise in (code) coverage-guided greybox fuzzing [14],
[32], [4].

How to maximize fuzzing throughput? AFLNET operates with
low fuzzing throughput, averaging around 20 executions per

second, due to several factors: Firstly, AFLNET sends inputs
through the network sockets, which is significantly slower than
reading inputs from files. Secondly, it introduces a time delay
between messages to ensure the server is ready to receive the
next message. Lastly, it runs a clean-up script to reset the state
of the environment after each iteration.

GREEN-FUZZ [33] improves the fuzzing throughput of
AFLNET by utilizing a simulated socket library Desock+, a
modified version of preeny, to reduce system call overhead.
NYX-NET [25] employs hypervisor-based snapshot fuzzing
to ensure noise-free execution and accelerate state resets.
SNAPFUZZ [34] enhances the fuzzing throughput by introducing
several strategies, including transforming slow asynchronous
network communication into fast synchronous communication,
snapshotting states, and using in-memory filesystems. These
approaches significantly increase the fuzzing throughput of
AFLNET.

How to maximize the syntactic validity of each message?
During message mutation, AFLNET uses the same byte-level
mutation operators as traditional greybox fuzzers, which can
easily break the structure of a valid message. In principle,
existing grammar-aware strategies can be applied to AFLNET

to improve the effectiveness of message mutation. Given a
user-provided data model describing the message grammar,
structure-aware blackbox protocol fuzzers [1], [16] generate
valid messages from scratch, while structure-aware greybox
fuzzers [3], [35] take a mutation-based approach. In contrast,
CHATAFL [24] obtains the message structure information from
the LLMs and then preserves valid message grammar dur-
ing mutation. In addition, there are several existing works
[36], [37], [38] that dynamically infer message structures
based on the observed messages. We can distinguish black-
box approaches [39], [40] that learn the message structure
from a given corpus of messages and whitebox approaches
[36], [41] that actively explore the protocol implementation
to uncover message structure. For instance, Polyglot [36] uses
dynamic analysis techniques, such as tainting and symbolic
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execution, to extract the message format from the protocol
implementation.

Protocol Environment Fuzzing. AFLNET focuses on only
fuzzing network traffic over a specific port. However, beyond
this single input source, network protocols often interact with
complex execution environments such as configuration files,
databases, and other network sockets, which can affect the
behaviors as well. CHAOSAFL [42] involves all file-related
inputs as fuzzing targets, while EFUZZ [43] considers the full
program environment in the system-call layer as fuzzing targets.
Both approaches extend the capability of AFLNET in finding
environment-inducing bugs.

VII. REFLECTIONS AND PATH FORWARD

Over the past five years, AFLNET has made significant contri-
butions to research, practice, and education. In terms of research
impact, the short tool demo paper of AFLNET has been cited
over 270 times (as of November 2024, according to Google
Scholar), with many citations appearing in premier conferences
and journals in Security and Software Engineering. Regarding
practical impact, AFLNET has garnered 872 stars on GitHub and
currently supports 17 protocols, 12 of which were contributed
by other researchers, demonstrating its versatility and commu-
nity engagement.

Security researchers have also published experience reports
and tutorials on using AFLNET for challenging targets [7],
[10], [11], [8], [9]. For example, the NCC Group explored
the challenges of fuzzing 5G protocols [7] and demonstrated
AFLNET’s ability to uncover bugs in this critical domain10.
Similarly, researchers from the University of Melbourne ex-
tended AFLNET to support IPv6 for fuzz testing the software
development kit (SDK) of Matter, a novel application-layer
protocol designed to unify fragmented smart home ecosystems
[44]. This extension has discovered zero-day vulnerabilities
in the Matter SDK [8], [9]. Moreover, ETAS, a subsidiary of
Robert Bosch GmbH, highlighted AFLNET as a potential open-
source protocol fuzzing solution in the context of the ISO/SAE
21434 standard for road vehicle cybersecurity engineering [11].
In education, AFLNET has been introduced to hundreds of Mas-
ter’s students through modules such as “Security and Software
Testing (SWEN90006)” [45] at the University of Melbourne
and “Fantastic Bugs and How to Find Them (17-712)” [46] at
Carnegie Mellon University.

Why has our work on AFLNet generated such practical and
academic impact in a short period of fewer than five years?
We can see two reasons: (i) our open science approach and
(ii) providing a practical solution to a long-standing problem of
validating reactive systems. As for our open science approach,
we strongly believe that sound progress in science requires
reproducibility and that effective impact in practice requires
open source. AFLNet is an excellent case demonstrating the
success of our open science approach. Today, it is expected that
the tools and artifacts are published together with the paper.

10NCC Group reported that AFLNET identified some crash-triggering issues,
which were under further investigation and subject to coordinated disclosure
as appropriate.

Five years ago, it was not common to make prototypes publicly
available as open source [47].

AFLNet is a practical solution to the long-standing problem
of validating reactive systems. Looking back and reflecting
on it, we feel this is because of the sheer dearth of suitable
approaches for testing reactive systems, though there exist many
approaches for testing sequential transformational systems. Re-
active systems are in continuous interaction with the environ-
ment by exchanging messages or events between the system and
the environment. Thus the “input” to a reactive system is not
a single event but rather a sequence of events. Most protocol
implementations are reactive systems - instead, the sequence
of messages that can be legitimately exchanged is the so-called
protocol! Prior to the greybox approach of AFLNet, reactive
system validation would typically need to be carried out via
stateful blackbox fuzzing approaches or via algorithmic white-
box verification approaches such as model checking. We al-
ready mentioned the deficiencies of using stateful blackbox
fuzzing approaches - since they involve manual writing of a
state model and data model. Moreover, the effectiveness of the
stateful blackbox fuzzing approach depends on how complete
the manually-written state model and data model are.

Regarding the use of model checking for validating reactive
systems, this would suffer from various limitations.

• A temporal logic property needs to be provided to guide
the validation exercise via model checking.

• The validation will be carried out at the model level where
only the protocol model is being checked. Alternatively,
if the protocol implementation is being checked, an ab-
straction will need to be designed to extract a finite state
transition system from the infinite state protocol imple-
mentation, as per the abstraction-refinement approach of
software model checking [48].

• Finally, after a bug is found, it is reported in the form of a
counter-example trace from where a buggy event sequence
still needs to be extracted.

The work of AFLNet and subsequent works free the practi-
tioner from all of these steps, thereby constituting a significant
practical advance. It also represents a significant conceptual
and practical advance over greybox fuzzing by accompanying
greybox fuzzing with lightweight model learning. This has
opened up the applicability of greybox fuzzing from stateless
systems like file format parsers to a plethora of stateful, reactive
applications. Recent works in the research community on ex-
tending greybox fuzzing to concurrent and distributed systems
(e.g., [49], [50]) also rely partially on the core advance in the
AFLNet work. Moving forward, we may thus see a much wider
variety of stateful, reactive, concurrent, distributed application
software being routinely checked via greybox fuzzing. These
advances would constitute the broader and longer-term impact
of the AFLNet work in 2020.
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