MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

AFLNet Five Years Later: On Coverage-
Guided Protocol Fuzzing

Ruijie Meng

PhD student at NUS
Incoming tenure-track faculty at CISPA

Co-authors: Van-Thuan Pham, Marcel Bohme and Abhik Roychoudhury



What is AFLNet?

{ First code- and state-coverage guided protocol fuzzer (1cst’20, Tool) J

March 2020

Released on



Contributions to Community

{ First code- and state-coverage guided protocol fuzzer (1cst’20, Tool) J

March 2020 June 2025

X /

-

Released on GitHub Research Contribution | _

g J

( )

Practice Contribution —

. J

Education Contribution

g J




Contributions to Community

{ First code- and state-coverage guided protocol fuzzer (1cst’20, Tool) J

March 2020 June 2025

_

Released on GitHub Research Contribution | _

~

{' 350+ Citations Jtice Contribution — 350+ Citations

J

~

[ Education Contribution

J




Contributions to Community

{ First code- and state-coverage guided protocol fuzzer (1cst’20, Tool) J

March 2020 June 2025

—_—

Released on GitHub [ Research Contribution ] _
RTSP, FTP, SSH, TLS,

SMTP . . 350+ Citations, 870+ Stars,
Practice Contribution —
17 protocols, more targets

, I
870+ stars on GitHub and 17 protocols supported

Used for challenging targets, e.g., 5G protocols, smart home
ecosystem, medical imaging applications and automotive systems




Contributions to Community

{ First code- and state-coverage guided protocol fuzzer (1cst’20, Tool) J

March 2020 June 2025
Released on GitHub Research Contribution | _
- \ 350+ Citations, 870+ Stars,
Introduced in graduate L Practice Contribution ) [ 17 protocols, more. targets,
courses, e.g., at course materials

University of Melbourne Education Contribution | —

and Carnegie Mellon
University




Why has AFLNet generated such impact
in a short period?



Why do we need stateful protocol fuzzing?



Testing Protocols is Important

* Network protocols are backbone of critical infrastructure

* Bugs in network protocols damage a lot

-

Heartbeat request
(normal)

yyyyyyyyyyyyyyyyyy

I r word: "blal Server

< llblahll
Sy
Heartbleed request
(attack)

If you are really there,

Heartbleed Vulnerability in
OpenSSL in 2014

A

Attacker

S 2A

Network protocols must be automatically and continuously tested
for security vulnerabilities




But...Testing Protocols is Challenging

* Statefulness and sequences of inputs pose challenges

220 LightFTP server v2.0a ready
USER foo

331 User foo OK. Password required
PASS foo

230 User logged in, proceed.

MKD demo

257 Directory created.

CWD demo

250 Requested file action okay, completed.
STOR test.txt

150 File status okay

226 Transfer complete

LIST

150 File status okay

226 Transfer complete

QUIT

221 Goodbye!

FTP Example of message exchange between client (red) and server (black)

10



But...Testing Protocols is Challenging

* Statefulness and sequences of inputs pose challenges

220 LightFTP server v2.0a ready

USER foo

331 User foo OK. Password required

PASS foo
|230 User logged in,| proce Statefulness: \
MKD demo -

257 Directory created. Sendlng the same

CWD demo . .

250 Requested file action InpUt message twice
STOR test.txt 1 1

150 File status okay mlght yleld a

226 Transfer complete different response

LIST

150 File status okay every time based on
226 Transfer complete

— Qtates /
221 Goodbye!

FTP Example of message exchange between client (red) and server (black)



But...Testing Protocols is Challenging

* Statefulness and sequences of inputs pose challenges

220 LightFTP server v2.0a ready

USER foo
331 User foo OK. Passwor¢s required

PASS foo

230 User logged in, proceed. Sequence InpUt:
MKD demo -

257 Directory created. ReaChlng a state
CWD demo

250 Requested file action okay, comp
STOR test.txt

, of messages
150 File status okay

requires a sequence

~

/

226 Transfer complete
LIST

150 File status okay
226 Transfer complete
QUIT

221 Goodbye!

FTP Example of message exchange between client (red) and server (black)

12



Existing Technigue — Model Checking

* A verification technique, but in practice for “bug finding”

M=

LN

Finite State Machine Desired Property



Existing Technigue — Model Checking

* A verification technique, but in practice for “bug finding”

e ‘M |=@
e Effective but with Limitations:

o A temporal logic property needs to be provided



Existing Technigue — Model Checking

* A verification technique, but in practice for “bug finding”

‘(M]|=

 Effective but with Limitations:
o A temporal logic property needs to be provided

o System modeling is not trivial

inconsistently with each other [12, 18]. Most approaches abstract
away the environment behind a model [2, 11], but writing abstract
models is labor-intensive (taking in some cases multiple person-
years [2]), models are rarely 100% accurate, and they tend to lose

“S2E: A Platform for In-Vivo
Multi-Path Analysis of Software
Systems”, ASPLOS’11

and the CompCert compiler [120]. Yet, there are, unfortunately, two main inter-related limitations of formally-verified

systems: (1) they require years of PhD-level expertise, with the specification often larger than the verified code itself,

and (2) the resulting systems lack many of the features and/or performance of their non-verified counterparts. In

“Software Security Analysis in 2030 and Beyond: A Research Roadmap”, TOSEM’25

15



Existing Technigue — Model Checking

* A verification technique, but in practice for “bug finding’
*Ml|=¢

e Effective but with Limitations:

o A temporal logic property needs to be provided

)

o System modeling is not trivial
o Bugs are reported in a counter-example trace not inputs




-

Existing Technique — Fuzzing

e Stateful blackbox fuzzing (e.g., Peach)

o Writing models still involves much manual effort and expertise

o Learn nothing from past execution

e Stateless greybox fuzzing (e.g., AFL)

o Almost no manual effort and expertise required

o Neither know states or message sequences

“One of the things that I struggle with is the limitation AFL
seems to have, in that it only performs fuzzing with one input
(a file). For many systems, such as network protocols, it would
be useful if fuzzing could be done on a sequence of inputs. This
sequence of inputs might be for example messages necessary to

complete a handshake in TLS/TCP.”
- Paul (a member of the AFL’s user group) [5]

-,

.

“I'm interested in doing something fairly non-traditional and
definitely not currently supported by AFL. I would like to
perform fuzzing of a large and complex external server that
cannot easily be stripped down into small test cases.”

- Tim Newsham (a member of the AFL’s user group) [5]

Requests from AFL’s users asking for stateful fuzzing support

17



Why has AFLNet generated such impact in a

short period?

Providing a practical solution for this long-standing problem

18



Input : Server program P, Sniffer traces T, IPSM S
e p p rO a C Output: Crashes Cy, Corpus C, and IPSM S

1 Corpus C' « (); Crashes C + (); Bitmap B «+ ()

2 for each trace t € T do > Pre-processing Phase ™

3 Sequence M <« parse(t) .

s | Corpus €« CU{M} Recording and replay
5 Response R « send(P, M, B) - .

6 | IPSM S + updatelPSM(S, R) for fuzzing
7 LastPathTime Ipt < cur_time

8 repeat > Fuzzing Phase _

9 if (cur_time — Ipt) > MaxTimeGap then

10 State s «— choose_state(S)

11 Sequence M < choose_sequence_to_state(C, s)

12 UU'] \ ﬂ-fz._. flff;} — M

(i.e., split M in subsequences such
that M, is the message sequence to
drive P to arrive at state s, and mes-
sage sequence M is selected to be

mutated)
13 else © Interleaving Seed Selection
14 Sequence M + choose_sequence_from_gueue(C')
15 <ﬂ1r].. ﬂ-fz._. J“'.«fg} — M

(i.e., randomly select subsequence
M> to be mutated)

16 for i from 1 to energy(M) do

17 Sequence M’ « (M, mutate( M), Ms)
18 Response R « send(P, M', B)

19 if P has crashed then

20 Crashes Cx + Cx U {M"}

21 LastPathTime Ipt < cur_time

22 else if is_interesting(M', B) then

23 Corpus C + CU{M'}

24 IPSM S + updateIPSM(S, R)

25 LastPathTime Ipt < cur_time

26 until timeout reached or abort 19



AFLNet Approach

220 LightFTP server v2.0a ready

USER foo
331 User foo OK. Password required
PASS foo
I 230 User logged inl proceed.
MKD demo
257 Directory created.
CWD demo

250 Requested file action okay, completed.
STOR test.txt

150 File status okay

226 Transfer complete

LIST

150 File status okay

226 Transfer complete

QUIT

221 Goodbye!

o-ofele-e-e-e-e

S | [ ¥ TS 1

10
11
12

(a4
(=]

Input : Server program P, Sniffer traces T, IPSM S
Output: Crashes Cy, Corpus C, and IPSM S

1 Corpus C' « (); Crashes Cx « (); Bitmap B + ()

2 for each trace t € T do & Pre-processing Phase

Sequence M <« parse(t)
Corpus C' + CU{M}
Response R « send(P, M, B)
IPSM S + updateIPSM(S, R)

LastPathTime Ipt + cur_time
repeat > Fuzzing Phase

if (cur_time — Ipt) > MaxTimeGap then
State s < choose_state(S)
Sequence M < choose_sequence_to_state(C, s)
UU'] \ ﬂﬂfz._. flff;} — M
(i.e., split M in subsequences such
that M, is the message sequence to
drive P to arrive at state s, and mes-
sage sequence M is selected to be
mutated)
else © Interleaving Seed Selection
Sequence M <+ choose_sequence_from_gueue(C')
<ﬂ1r] . ﬂ'_fz._. J“'.«fg} — M
(i.e., randomly select subsequence
| M; to be mutated)
for i from 1 to energy(M) do
Sequence M’ « (M, mutate( M), Ms)
Response R « send(P, M', B)
if P has crashed then
Crashes Cx + Cx U {M"}
LastPathTime Ipt < cur_time
else if is_interesting(M', B) then

26 until timeout reached or abort

20



Input : Server program P, Sniffer traces T, IPSM S
e t p p rO a C Output: Crashes Cy, Corpus C, and IPSM S
1 Corpus C' « (); Crashes Cx « (); Bitmap B + ()
2 for each trace t € T do & Pre-processing Phase

220 LightFTP server v2.0a ready 3 Sequence M «— parse(t)
USER foo 1 Corpus C' + CU{M}
, 5 Response R < send(P, M, B)
EiéSU?er foo OK. Password required . IPSM S « updatelPSM(S, R)
00 -
230 User logged in, proceed 7 LastPathTime Ipt < cur_time
MKD demo ' ) 8 repeat > Fuzzing Phase
257 Directorv created 9 if (cur_time — Ipt) > _Ma.r_Tir'n.eGap then =
WD d Y ’ 10 State s < choose_state(S)
€mo 11 Sequence M + choose_sequence_to_state(C, s

250 Requested file action okay, completed.
STOR test.txt
150 File status okay

12

(i.e., split M in subsequences such
that M, is the message sequence to

226 Transfer complete drive P to arrive at state s, and mes-

LIST sage sequence M, is selected to be

150 File status okay mutated)

226 Transfer complete 13 else i Interleaving Seed Selection
QUIT 14 Sequence M + choose_sequence_from_gueue(C')
221 Goodbye! 15 (M1, Ma, M3} +— M

(i.e., randomly select subsequence
M> to be mutated)

Not logged in 16 fl;l' i from 1 to energy(M) do

17 Sequence M’ « (M, mutate( M), Ms)
PASS bar 18 Response R « send(P, M', B)

19 if P has crashed then

20 Crashes Cx + Cx U {M"}

21 LastPathTime Ipt < cur_time

22 else if is_interesting(M', B) then

23 Corpus C + CU{M'}

2 IPSM S + updateIPSM(S, R)

25 LastPathTime Ipt < cur_time

26 until timeout reached or abort




Input : Server program P, Sniffer traces T, IPSM S
e t p p rO a C Output: Crashes Cy, Corpus C, and IPSM S
1 Corpus C' « (); Crashes Cx « (); Bitmap B + ()
2 for each trace t € T do & Pre-processing Phase

220 LightFTP server v2.0a ready : Sequence M « parse(t)
USER foo 1 Corpus C' + CU{M}
, 5 Response R < send(P, M, B)
331 User foo OK. Password required . IPSM S « updateIPSM(S, R)
PASS foo -
230 User logged in, proceed. 7 LastPathTime Ipt < cur_time
MKD demo ' 8 repeat > Fuzzing Phase
257 Directorv created 9 if (cur_time — Ipt) > MaxTimeGap then
CWD d Y ’ 10 State s + choose_state(S)
emo 4 £il . K 1 3 11 Sequence M < choose_sequence_to_state(C, s)
250 Requeste 1le action okay, completed. 12 (My, My, M3) — M

STOR test.txt

- (i.e., split M in subsequences such
150 File status okay

that M, is the message sequence to

226 Transfer complete drive P to arrive at state s, and mes-

LIST sage sequence M, is selected to be

150 File status okay mutated)

226 Transfer complete 13 else i Interleaving Seed Selection
QUIT 14 Sequence M + choose_sequence_from_gueue(C')
221 Goodbye! 15 (M1, Ma, M3} +— M

(i.e., randomly select subsequence
M> to be mutated)

Not logged in 16

PASS bar 18
19 if P has crashed then
20 Crashes Cx + Cx U {M"}
21 LastPathTime Ipt < cur_time
22 else if is_interesting(M', B) then
23 Corpus C + CU{M'}
2 IPSM S + updateIPSM(S, R)
25 LastPathTime Ipt < cur_time

26 until timeout reached or abort



Input : Server program P, Sniffer traces T, IPSM S
e t p p rO a C Output: Crashes Cy, Corpus C, and IPSM S
1 Corpus C' « (); Crashes Cx « (); Bitmap B + ()
2 for each trace t € T do & Pre-processing Phase

220 LightFTP server v2.0a ready : Sequence M « parse(t)
USER foo 1 Corpus C' + CU{M}
, 5 Response R < send(P, M, B)
331 User foo OK. Password required . IPSM S « updateIPSM(S, R)
PASS foo -
230 User logged in, proceed. 7 LastPathTime Ipt < cur_time
MKD demo ' 8 repeat > Fuzzing Phase
257 Directorv created 9 if (cur_time — Ipt) > MaxTimeGap then
CWD d Y ’ 10 State s + choose_state(S)
emo 4 £il . K 1 3 11 Sequence M < choose_sequence_to_state(C, s)
250 Requeste 1le action okay, completed. 12 (My, My, M3) — M

STOR test.txt

- (i.e., split M in subsequences such
150 File status okay

that M, is the message sequence to

226 Transfer complete drive P to arrive at state s, and mes-

LIST sage sequence M, is selected to be

150 File status okay mutated)

226 Transfer complete 13 else i Interleaving Seed Selection
QUIT 14 Sequence M + choose_sequence_from_gueue(C')
221 Goodbye! 15 (M1, Ma, M3} +— M

(i.e., randomly select subsequence
M> to be mutated)

Not logged in 16 fl;l' i from 1 to energy(M) do

17 Sequence M’ « (M, mutate( M), Ms)
PASS bar 18 Response R « send(P, M', B)

19 if P has crashed then

20 Crashes Cx + Cx U {M"}

n LastPathTime Ipt <— cur time

22 Flse if is_interesting(M', B) the

23 Corpus O «— CU{M™}

2 IPSM S + updateIPSM(S, R)

25 LastPathTime Ipt < cur_time

26 until timeout reached or abort



Multiple Feedback Modes

-, dark-, and grey-modes

* Coverage in blac

=
<
=]

[
=
=

#Branch Coverage

=

2000

=
=
[=]

o

#Branch Coverage

2000

- AFLNet
AFLNetBlack
—— AFLNetDark

10 20

forked-daapd

e m—————
-

AFLNet
AFLNetBlack
— AFLNetDark

10 20

OpenSSH

[

#Branch Coverage

-

AFLNet
AFLNetBlack
—— AFLNetDark

0

10 20
Time (in hours)

2000

10000

5000

4000

2000

AFLNet
AFLNetBlack
—— AFLNetDark

0

10 20

Kamailio

AFLNet
AFLNetBlack
—— AFLNetDark

10 20

ProFTPD

=

P ———————

AFLNet
AFLNetBlack
—— AFLNetDark

0

10 20
Time (in hours)

DNSmasq
1000] (==
500 -—=-_ AFLNet
AFLNetBlack
—— AFLNetDark
0
0 10 20
lightftp
200
-==- AFLNet
AFLNetBlack
0 —— AFLNetDark
0 10 20
Pure-FTPd
1000
500 -==- AFLNet
AFLNetBlack
0 —— AFLNetDark
0 10 20

Time (in hours)

2000

2000

500

250

Exim
--=- AFLNet
AFLNetBlack
—— AFLNetDark
0 10 20
Live555
-==- AFLNet
AFLNetBlack
—— AFLNetDark
0 10 20
TinyDTLS
'r _______________
1
===- AFLNet
AFLNetBlack
—— AFLNetDark
0 10 20

Time (in hours)

24



Open-Sourced Tool

* AFLNet acts as the client
o Follow real-world architectures of network protocols

o Reduce manual effort in understanding protocols or modifying
source code

afinet/afinet (m) s

el O,

(https:/thuanpv.github.io/publications/AFLNet_ICST20.pdf) X o 0 . e
d
Hy
[ ] .-
-

[ ]
A 38 ® 31 Y 931 % 195 - U
Issues Stars Forks

Contributors Stars Forks

AFLNet: A Greybox Fuzzer for Network Protocols

however, a better option is AFLnet (https://github.com/aflnet/aflnet) which

allows you to define network state with different type of data packets.

best practice in fuzzing network services from the AFL++ document

25



Why has AFLNet generated such impact in a

short period?

Providing a practical solution for this long-standing problem
Open Science Approach

26



More Research is In Progress



Recent Progress in Stateful Fuzzing

-

4 I
What is a state?

o SGFuzz (Usenix Sec’22)

o StateAFL (EMSE’22)

o ChatAFL (NDSS’24)

o 4
/ N
Protocol Environment Fuzzing

o ChaosAFL (ArXiv'23)
o EnvFuzz (CCS’23)
. Y,

-

How to maximize syntactic validity of
each message?

o ChatAFL (NDSS’24)

)

/

~

How to maximize fuzzing throughput?

o Nyx-Net (EuroSys’22)
o SnapFuzz (ISSTA’22)

I



Path Forward

Network protocol

Distributed System

Autonomous vehicle

|

More stateful software
being routinely checked

|

Kernel Drivers

Al agent

Industrial control system

Cyber-Physical System

Internet of Things

29




What is AFLNet?

[ First code- and state-coverage guided protocol fuzzer (1cst20, Tool) }

March 2020 June 2025

Released on GitHub [ Research Contribution }

350+ Citations, 870+ Stars,
[ Practice Contribution J 17 protocols, more targets,
course materials

[ Education Contribution J

Why has AFLNet generated such impactin a
short period?

¢ Providing a practical solution for this long-standing problem
¢ Open Science Approach

Input : Server program P, Sniffer traces T, IPSM §
et Approach s

220 LightFTP server v2.0a ready
us

3

r foo OK. Password required

230 User logged in, proceed.
MKD demo

257 Directory created.

STOR test. txt
150 File status ckay
226 Transfer complete
et

150 File status ckay
226 Transfer complete

o
Rrequested file action okay, completed.

' - 0 Bitmap - 0
> Pre-processing Phase

Re R send(P, M, B)

o [ IPSM S o updetetPSMI(S, R)

» LastPathTime ipt + e

s repeat » Fuzzing Phase
en

drive nd me
sage sequence My is selected to be
mutated)
n else © Interleaving Seed Selection

QurT u wose_sequence_from_queue(C')
221 Goodbye! = \; o
e Iy select subsequence
P M to be mutated)
w | fori from 1 toenergy(M) de
ooy Not logged in u | forifm o }
" Response
" if P ias o
»
n La
= else if
n
u IPSM S « updatelP:
= LastPathTime [pt «
2 until timeout reached or abort

Recent Progress in Stateful Fuzzing

Protocol Environment Fuzzing

o ChaosAFL (ArXiv'23)
e EnvFuzz (CCS'23)

s A ~
What is a state? How to maximize syntactic validity of
> SGFuzz (Usenix Sec’'22) each message?
o StateAFL (EMSE’22) o ChatAFL (NDSS’'24)
o ChatAFL (NDSS'24)
AN /‘
I N

How to maximize fuzzing throughput?
s Nyx-Net (EuroSys’'22)
° SnapFuzz (ISSTA’22)

Thanks!

30



	Slide 1: AFLNet Five Years Later: On Coverage-Guided Protocol Fuzzing
	Slide 2: What is AFLNet?
	Slide 3: Contributions to Community
	Slide 4: Contributions to Community
	Slide 5: Contributions to Community
	Slide 6: Contributions to Community
	Slide 7
	Slide 8
	Slide 9: Testing Protocols is Important
	Slide 10: But…Testing Protocols is Challenging
	Slide 11: But…Testing Protocols is Challenging
	Slide 12: But…Testing Protocols is Challenging
	Slide 13: Existing Technique – Model Checking 
	Slide 14: Existing Technique – Model Checking 
	Slide 15: Existing Technique – Model Checking 
	Slide 16: Existing Technique – Model Checking 
	Slide 17: Existing Technique – Fuzzing
	Slide 18
	Slide 19: AFLNet Approach
	Slide 20: AFLNet Approach
	Slide 21: AFLNet Approach
	Slide 22: AFLNet Approach
	Slide 23: AFLNet Approach
	Slide 24: Multiple Feedback Modes
	Slide 25: Open-Sourced Tool 
	Slide 26
	Slide 27
	Slide 28: Recent Progress in Stateful Fuzzing
	Slide 29: Path Forward
	Slide 30

