44th International Conference on Software Engineering (ICSE 2022)

Linear-time Temporal Logic guided Greybox Fuzzing

Ruijie Meng

ruijie@comp.nus.edu.sg

Co-authors: Zhen Dong, Jialin Li, Ivan Beschastnikh, Abhik Roychoudhury

Background

Fuzzing

- Automatic and dynamic testing technique
- Continuously generates inputs and feeds them to the target programs, and then reports inputs that trigger *crashes* or *hangs*

Types:

- Blackbox Fuzzing (without program analysis and feedback)
- Whitebox Fuzzing (heavy program analysis)
- Greybox Fuzzing (lightweight feedback)

Greybox Fuzzing

Advantages of Greybox Fuzzing

- ✓ better **coverage** than blackbox fuzzing
- ✓ better **scalability** than whitebox fuzzing
- \checkmark widely used and have exposed many bugs

Challenges of Greybox Fuzzing

- Checking functional properties (e.g., linear-time temporal logic (LTL)
 properties), not just crashes or hangs
- Efficiently search executions of systems under test to check

But... model checking works well on models, and scales poorly to large programs

Can we have the best of the both worlds ???

Linear-time Temporal Logic (LTL)

LTL Syntax:

Propositional Linear-time Temporal logic

 $\succ \phi = X\phi \mid G\phi \mid F\phi \mid \phi_1 \mid U \mid \phi_2 \mid \phi_1 \mid R \mid \phi_2 \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid Prop$

Temporal operators: X(next state), F(eventually), G(globally), U(until), R(release)

LTL Conventions:

> An LTL formula φ is interpreted over an infinite sequence of states $\pi = s_0, s_1, \dots$ Use $\mathfrak{M}, \pi \models \varphi$ to denote that formula φ holds in path π of system model \mathfrak{M}

> An LTL property φ is true of a system model *iff* all its traces satisfy φ , $\mathbb{M} \models \varphi$ *iff* $\mathbb{M}, \pi \models \varphi$ for all traces π in system model \mathbb{M}

Software Model Checking

- A property verification technique, but common usage is bug-finding
- Check if a *finite-state* transition system model satisfies a temporal logic property
 The property constraints orderings of events
 - \geq The system model is abstracted from the software system

•Automata-theoretic model checking is widely used (e.g., SPIN)

LTL guided Fuzzing

- Use LTL properties as test oracles and check them
- Use Büchi automata of the negated LTL properties to guide greybox fuzzing

Workflow

• Work on sequential reactive stateful systems

LTL Property Construction

Linear-time Temporal Logic guided Greybox Fuzzing

Program Transformation

Büchi Automata Guided Fuzzing

- Büchi automata accepts traces with a specific order of propositions
- Direct fuzzing towards multiple program locations in a specific order

> Power scheduling (reach one target):

Select seeds closer to the target on the inter-procedural control flow graph

>Input prefix saving (reach further targets):

Observe execution and save the achieved progress when reaching a target by saving input prefixes

Büchi Automata Guided Fuzzing

Prefix	State	Target	Input	Trace	Prefix Saving	Violation
	0	а	xxxy	<i>{a}</i>	<1, xxx>	×
XXX	1	0	xxxzy	{ <i>a</i> , <i>o</i> }	<2, xxxz>	×
XXXZ	2	l	XXXZWW	$\{a, o, l\}$	<2, xxxzw>	×
XXXZW	2	l	XXXZWZZ	$\{a, o, l, l\}$		

Fuzzing Process

Linear-time Temporal Logic guided Greybox Fuzzing

Finding deep bugs from Software MC via Fuzzing

Common usage of Software Model Checking is for bug finding

- X Restricted set of properties for software model checking
- X Mostly restricted to proving / disproving of invariants due to nature of state abstractions
- X Unnecessary state savings and state explosion problem

Bug finding search in model checking via directed greybox fuzzing

- ✓ Cover the whole specification language of properties for a well-known and popular temporal logic - LTL
- ✓ Fuzzing for more advanced oracles than simple oracles such as crashes and overflows
- ✓ No state explosion problem as in model checking

Evaluation

Research Questions

- **RQ1** Effectiveness: How effective is LTL-Fuzzer at finding LTL property violations?
- **RQ2** Comparison: How does LTL-Fuzzer compare to the state-of-the-art tools in terms of finding LTL property violations?
- **RQ3** Usefulness: How useful is LTL-Fuzzer in revealing LTL property violations in real-world systems?

Subject Programs

- ProFTPD Pure-FTPd
- Live555 OpenSSL
- OpenSSH TinyDTLS
- Contiki-Telnet

Comparisons

- AFLGo
- AFL_{LTL}
- L+NuSMV

Our tool LTL-Fuzzer and dataset are publicly available at:

https://github.com/ltl fuzzer/LTL-Fuzzer

Effectiveness & Comparison

Dron	CVF-ID	Type of Vulnerability	Drogram	Version	LTL-Fuzzer	AFL _{LTL}		AFLGo		L+NuSMV				
Пор	CVE-ID	Type of vulnerability	Fiogram		Time(h)	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}			
PrF_1	CVE-2019-18217	Infinite Loop	ProFTPD	1.3.6	4.62	T/O	1.00	T/O	1.00	T/O	1.00			
PrF_2	CVE-2019-12815	Illegal File Copy	ProFTPD	1.3.5	0.95	2.01	0.84	T/O	1.00	T/O	1.00			
PrF_3	CVE-2015-3306	Improper Access Control	ProFTPD	1.3.5	1.14	1.89	0.76	T/O	1.00	T/O	1.00			
PrF_4	CVE-2010-3867	Illegal Path Traversal	ProFTPD	1.3.3	2.06	5.17 0.85		T/O	1.00	T/O	1.00			
LV_1	CVE-2019-6256	Improper Condition Handle	Live555	2018.10.17	5.29	11.13	1.00	11.47	1.00	T/O	1.00			
LV_2	CVE-2019-15232	Use after Free	Live555	2019.02.03	0.22	1.42	0.91	1.46	0.92	T/O	1.00			
LV_3	CVE-2019-7314	Use after Free	Live555	2018.08.26	1.27	4.18	0.98	T/O	1.00	T/O	1.00			
LV_4	CVE-2013-6934	Numeric Errors	Live555	2013.11.26	2.73	2.58	0.40	2.21	0.39	T/O	1.00			
LV_5	CVE-2013-6933	Improper Operation Limit	Live555	2011.12.23	1.80	1.99	0.63	1.45	0.33	T/O	1.00			
SH_1	CVE-2018-15473	User Enumeration	OpenSSH	7.7p1	0.18	0.17	0.44	T/O	1.00	24.00	1.00			
SH_2	CVE-2016-6210	User Information Exposure	OpenSSH	7.2p2	0.19	0.19	0.50	T/O	1.00	24.00	1.00			
SL_1	CVE-2016-6309	Use after Free	OpenSSL	1.1.0a	3.77	6.00	0.74	6.58	0.82	T/O	1.00			
SL_2	CVE-2016-6305	Infinite Loop	OpenSSL	1.1.0	1.45	T/O	1.00	T/O	1.00	T/O	1.00			
SL_3	CVE-2014-0160	Illegal Memory Access	OpenSSL	1.0.1f	1.11	7.31	1.00	T/O	1.00	T/O	1.00			
Found violations in total				-	14		12		5		2			
Average time usage (hours)				-	1.91		6.57		17.08		24.00			
Comp	arison with LTL-Fu	zzer on time usage		-	-		3.44x		8.93x	1	12.55x			
-														

For RQ2 (Comparison):

- Our tool found the *most* violations
- Our tool was the *fastest*

For RQ1 (effectiveness):

LTL-Fuzzer discovered violations for *all* 14 properties derived from known CVEs

Usefulness

Prop	Program	Description of violated properties	Bug Status				
TD ₁	TinyDTLS0.9	If the server is in the WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie and the epoch value 0, must finally give ServerHello responses.					
TD_2	TinyDTLS0.9	If the server is in WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie but not 0 epoch value, must not give ServerHello responses before receiving ClientHello with 0 epoch value.	CVE-2021-42142, fixed				
TD ₃	TinyDTLS0.9	If the server is in the WAIT_CLIENTHELLO state and receives a ClientHello request with an invalid cookie, C must reply HelloVerifyRequest. C					
TD ₅	TinyDTLS0.9	If the server is in the DTLS_HT_CERTIFICATE_REQUEST state and receives a Certificate request, must give a DTLS_ALERT_HANDSHAKE_FAILURE or DTLS_ALERT_DECODE_ERROR response, or set Client_Auth to be verified. CV fixe					
TD ₁₁	TinyDTLS0.9	TLS0.9 After the server receives a ClientHello request without renegotiation extension and gives a ServerHello response, then receives a ClientHello again, must refuse the renegotiation with an Alert.					
<i>TD</i> ₁₂	TinyDTLS0.9	After the server receives a ClientHello request and gives a ServerHello response, then receives a ClientKeyExchange request with a different epoch value than that of ClientHello, server must not give ChangeCipherSpec responses.					
TD ₁₃	TinyDTLS0.9	After the server receives a ClientHello request and gives a ServerHello response, then receives a ClientHello request with the same epoch value as that of the first one, server must not give ServerHello.					
TD_{14}	TinyDTLS0.9	If the server receives a ClientHello request and gives a HelloVerifyRequest response, and then receives a over-large packet even with valid cookies, the server must refuse it with an Alert.	CVE-2021-42144, fixed				
CT ₁	Contiki-Telnet3.0	After WILL request is received and the corresponding option is disabled, must send D0 or D0NT responses.	CVE-2021-40523				
CT_2	Contiki-Telnet3.0	After DO request is received and the corresponding option is disabled, must send WILL or WONT responses.	Confirmed				
CT ₇	Contiki-Telnet3.0	After WONT request is received and the corresponding option is disabled, must not give responses.	CVE-2021-38311				
CT_8	Contiki-Telnet3.0	After DONT request is received and the corresponding option is disabled, must not give responses.	Confirmed				
CT10	Contiki-Telnet3.0	Before Disconnection, must send an Alert to disconnect with clients.	CVE-2021-38387				
CT11	Contiki-Telnet3.0	If conducting COMMAND without AbortOutput, the response must be same as the real execution results.	CVE-2021-38386				
PuF ₅	F ₅ Pure-FTPd1.0.4 When quota mechanism is activated and user quota is exceeded, must finally reply a quota exceed message.						

Extract 50 LTL properties from FTP, RTSP, SSL, SSH, DTLS and Telnet RFCs

For RQ3 (Usefulness):
Out of 50 LTL properties,
15 new property
violations are found and
12 CVEs are assigned

Summary

Research Questions

- RQ1 Effectiveness: How effective is LTL-Fuzzer at finding LTL property violations?
- RQ2 Comparison: How does LTL-Fuzzer compare to the state-of-the-art tools in terms of finding LTL property violations?
- RQ3 Usefulness: How useful is LTL-Fuzzer in revealing LTL property violations in realworld systems?

PyF1 0 PyF2 0 PyF3 0 PyF4 0 LV1 0 LV2 0 LV3 0 LV4 0	CVE-2019-18217 CVE-2019-12815 CVE-2015-3306 CVE-2010-3867 CVE-2019-6256 CVE-2019-13232	Infinite Loop Illegal File Copy Improper Access Control	ProFTPD ProFTPD	1.3.6	Time(h) 4.62	Time(h) T/O	A ₁₂	Time(h)	A11	Time(h)	A ₁₂		
PyF1 0 PyF2 0 PyF5 0 PyF4 0 LV1 0 LV2 0 LV3 0 LV4 0	CVE-2019-18217 CVE-2019-12815 CVE-2019-3306 CVE-2010-3867 CVE-2019-6256 CVE-2019-13232	Infinite Loop Illegal File Copy Improper Access Control	ProFTPD ProFTPD	1.3.6	4.62	T/O	5.00	100-101					
PyF ₂ 0 PyF ₃ 0 PyF ₄ 0 LV ₁ 0 LV ₂ 0 LV ₃ 0 LV ₄ 0	CVE-2019-12815 CVE-2015-3386 CVE-2010-3867 CVE-2019-6256 CVE-2019-15232	Illegal File Copy Improper Access Control	ProFTPD	135	-		1.00	1/0	1.00	TO	1.00		
PrF ₃ 0 PrF ₄ 0 LV ₁ 0 LV ₂ 0 LV ₃ 0 LV ₄ 0 LV ₄ 0	CVE-2015-3386 CVE-2010-3867 CVE-2019-6256 CVE-2019-15232	Improper Access Control			0.95	2.01	0.84	TO	1.00	T/O	1.00		
PrF ₄ 0 LV ₁ 0 LV ₂ 0 LV ₃ 0 LV ₄ 0	CVE-2010-3867 CVE-2019-6256 CVE-2019-13232	All and Real Observations	ProFIPD	1.3.5	1.14	1.89	0.76	T/O	1.00	T/O	1.00		
LV ₁ 0 LV ₂ 0 LV ₃ 0 LV ₄ 0	CVE-2019-6256 CVE-2019-13232	anega rain traversa	ProFTPD	1.3.3	2.06	5.17	0.85	T/O	1.00	T/O	1.00		
LV ₂ 0 LV ₃ 0 LV ₄ 0	CVE-2019-15252	Improper Condition Handle	Live555	2018.10.17	5.29	11.13	1.00	11.47	1.00	T/O	1.00		
LV3 0 LV4 0		Use after Free	Live555	2019.02.03	0.22	1.42	0.91	1.46	0.92	T/O	1.00		
LV ₄	CVE-2019-7314	Use after Free	Live555	2018.08.26	1.27	4.18	0.98	T/O	1.00	T/O	1.00	For RQ2 (Con	iparison):
4 8 2 4	CVE-2013-6034	Numeric Errors	Live555	2013.11.26	2.73	2.58	0.40	2.23	0.39	TO	1.00		
1.93 1	CVE-2013-6933	Improper Operation Limit	Live 555	2011.12.23	1.80	1.99	0.63	1.45	0.33	T/O	1.00	 Our tool for 	and the most
SH ₁ 0	CVE-2018-15473	User Enumeration	OpenSSH	7.7p1	0.18	0.17	0.44	T/O	1.00	24.00	1.00	violations	
5H ₂ 0	CVE-2016-6210	User Information Exposure	Open88H	7.2p2	0.19	0.19	0.50	TO	1.00	24,00	1.00	violations	
SL ₁ (CVE-2016-6309	Use after Free	OpenSSL.	1.1.0a	3.77	6.00	0.74	6.58	0.82	T/O	1.00	 Our tool real 	a the Contact
SL ₀ 0	CVE-2016-6305	Infinite Loop	OpenSSL.	1.1.0	1.45	. T/O	1.00	T/O	1.00	T/O	1.00	• Our toor wa	s the justest
SL3 0	CVE-2014-0160	fliegal Memory Access	OpenSSL.	1.0.1f	1.11	7.31	1.00	T/O	1.00	TO	1.00		
Found vi	rielations in total				14		12		5		1		
Average	time usage (hour	s)			1.91		6.57		17.08		24.00		
Compari	rison with LTL-FU	zzzz on time usage			· · ·		3.44x		5.93x		12.55x		
	F L' al	or RQ1 (effective IL-Fuzzer discov // 14 properties de	eness): ered vid erived f	olations rom kno	for own								

Prop	Program	Description of violated properties	Bug Status	
TD	TinyDTLS0.9	If the server is in the WAIT_CLIENTHELLD state and receives a ClientHello request with valid cookie and the epoch value 0, must finally give ServerHello responses.	CVE-2021-42143, fixed	6
TD ₁	TasyDTLS0.9	If the server is in WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie but not 0 epoch value, must not give ServerHello responses before receiving ClientHello with 0 epoch value.	CVE-2021-62142, fixed	Extract 50 LTL properties
TD ₁	TinyDTLS0.9	If the server is in the WAIT_CLEDNTHELLO state and receives a ClientHello request with an invalid cookie, must reply WelloVer if yRequest.	CVE-2021-42147, fixed	from FTP, RTSP, SSL, SSI
TD5	TanyDTLS8.9	If the server is in the DTLS_HT_CORTIFICATE_REQUEST state and receives a Certificate request, must give a DTLS_ALERT_MMDSHWE_FAILURE or DTLS_ALERT_DECODE_ERMON response, or set Client_Auch to be verified.	CVE-2021-62145, fixed	DTLS and Telnet RFCs
TDu	TinyDTLS0.9	After the server receives a ClientHello request without renegotiation extension and gives a ServerHello response, then receives a ClientHello again, must refuse the renegotiation with an Alert.	Confirmed	
TDia	TasyDTLS0.9	After the server receives a ClientHello request and gives a ServerHello response, then receives a ClientReyExchange request with a different epoch value than that of ClientHello, server must not give ChangeCipherSore responses.	CVE-2021-42141, fixed	For RO3 (Usefulness):
TDis	TanyDTLS0.9	After the server receives a ClientDiello request and gives a Serverthello response, then receives a ClientDiello responst with the same epoch value as that of the first one, server must not give Servertiello.	CVE-2021-42146	Out of \$0 LTL properties
TD14	TinyDTLS0.9	If the server receives a CLI entHeLLO request and gives a HeLLOVEr I fyBrquest response, and then receives a over-large packet even with valid coskies, the server must refuse it with an ALErt.	CVE-2021-42144, fixed	out of 50 LTL properties,
CT_1	Contiki-Telnet3.0	After WLL respect is received and the corresponding option is disabled, must send 50 or D0NT responses.	CVE-2021-40523	15 new property
CI_2	Contiki-Trinet3.0	After D0 request is received and the corresponding option is disabled, must send WILL or WDNT responses.	Confirmed	wielstions are found and
CT ₁	Contiki-Telnet3.0	After WONT request is received and the corresponding option is disabled, must not give responses.	CVE-2021-38311	violations are found and
C74	Contiki-Telnet3.0	After DONT request is received and the corresponding option is disabled, must not give responses.	Contened	4 9 CUTTe and and
CT_{14}	Contiki-Telnet3.0	Before Disconnection, must send an Alert to disconnect with clients.	CVE-2021-36387	■ CVEs are assigned
CT_{11}	Contiki-Teinet3.0	If conducting COPMAD without Abor tOutput, the response must be same as the real execution results.	CVE-2021-38386	
Pars	Pare-FTPd1.0.4	When quota mechanism is activated and user quota is exceeded, must finally reply a quota exceed message.	CVE-2023-40524, fixed	

THANKS!!