
Linear-time Temporal Logic guided

Greybox Fuzzing

Ruijie Meng

ruijie@comp.nus.edu.sg

Co-authors: Zhen Dong, Jialin Li, Ivan Beschastnikh, Abhik Roychoudhury

44th International Conference on Software Engineering (ICSE 2022)

Linear-time Temporal Logic guided Greybox Fuzzing

Background

2

CVE-2015-3306

Violations of Simple Oracles:

Crashes/Hangs

Overflows…

Violations of Temporal Logic Properties:

USER test PASS test
SITE CPFR
/etc/passwd

SITE CPTO
/my-dir

CVE-2015-3306

Linear-time Temporal Logic guided Greybox Fuzzing

Fuzzing

Automatic and dynamic testing technique

Continuously generates inputs and feeds them to the target programs,

and then reports inputs that trigger crashes or hangs

Types:

➢ Blackbox Fuzzing (without program analysis and feedback)

➢ Whitebox Fuzzing (heavy program analysis)

➢ Greybox Fuzzing (lightweight feedback)

3

Linear-time Temporal Logic guided Greybox Fuzzing

Greybox Fuzzing

4

Advantages of Greybox Fuzzing

✓ better coverage than blackbox fuzzing

✓ better scalability than whitebox fuzzing

✓ widely used and have exposed many bugs

Challenges of Greybox Fuzzing

Checking functional properties (e.g.,

linear-time temporal logic (LTL)

properties), not just crashes or hangs

Efficiently search executions of systems

under test to check

But… model checking works well

on models, and scales poorly to

large programs

Can we have the best of the

both worlds ???

There is already an approach that

does that — model checking!!

Linear-time Temporal Logic guided Greybox Fuzzing

Linear-time Temporal Logic (LTL)

LTL Syntax:

➢Propositional Linear-time Temporal logic

➢ = X | G | F | 1 U 2 | 1 R 2 |  |    |    | Prop

➢Temporal operators: X(next state), F(eventually), G(globally), U(until), R(release)

LTL Conventions:

➢An LTL formula  is interpreted over an infinite sequence of states  = s0, s1, …

Use M, |=  to denote that formula  holds in path  of system model M

➢An LTL property  is true of a system model iff all its traces satisfy , M |= iff

M, |=  for all traces  in system model M

5

Linear-time Temporal Logic guided Greybox Fuzzing

Software Model Checking

A property verification technique, but common usage is bug-finding

Check if a finite-state transition system model satisfies a temporal logic property

➢The property constraints orderings of events

➢The system model is abstracted from the software system

Automata-theoretic model checking is widely used (e.g., SPIN)

6

Linear-time Temporal Logic guided Greybox Fuzzing

LTL guided Fuzzing

Use LTL properties as test oracles and check them

Use Büchi automata of the negated LTL properties to guide greybox fuzzing

7

Greybox

Fuzzing

Model

Checking

Synergy

Inputs Counter
examples

TracesSoftware
System

LTL Property
ф

Greybox
Fuzzing

Safety
Properties

Liveness
Properties

Linear-time Temporal Logic guided Greybox Fuzzing

Workflow

8

Program
Transformation

Input

Büchi Automata
Guided Fuzzing

OutputIV

III

I

II

Work on sequential reactive stateful systems

Linear-time Temporal Logic guided Greybox Fuzzing

LTL Property Construction

9

Step 1

Extract one informal property from the FTP RFC
Illustrative Example:

When the user_quota is exceeded and the quota mechanism is
activated, the server should finally reply 552 to stop receiving data

Step 2

Translate into LTL formula
Illustrative Example:

Property ф: ¬F (a ∧ F (o ∧ G¬n)) → F (a ∧ F (o ∧ G¬n))

Step 3

Identify program locations
Illustrative Example:

Linear-time Temporal Logic guided Greybox Fuzzing

Program Transformation

10

[Safety properties]

Event Generator

[Liveness properties]

Actions:

• Instrument Monitor

• Evaluate traces

State Recorder

Linear-time Temporal Logic guided Greybox Fuzzing

Büchi Automata Guided Fuzzing

Büchi automata accepts traces with a specific order of propositions

Direct fuzzing towards multiple program locations in a specific order

➢Power scheduling (reach one target):

Select seeds closer to the target on the inter-procedural control flow graph

➢Input prefix saving (reach further targets):

Observe execution and save the achieved progress when reaching a target by

saving input prefixes

11

Linear-time Temporal Logic guided Greybox Fuzzing
12

Büchi Automata Guided Fuzzing

Our Approach

Prefix State Target Input Trace Prefix Saving Violation

-- 0 a xxxy {a} <1, xxx> 

xxx 1 o xxxzy {a, o} <2, xxxz> 

xxxz 2 l xxxzww {a, o, l} <2, xxxzw> 

xxxzw 2 l xxxzwzz {a, o, l, l} -- √

1. LTL property ф:

¬F (a ∧ F (o ∧ G¬n))

2. Büchi automata Aф :

Fuzzing ProcessExample

Linear-time Temporal Logic guided Greybox Fuzzing

Finding deep bugs from Software MC via Fuzzing

13

Common usage of Software
Model Checking is for bug
finding

Restricted set of properties
for software model
checking

Mostly restricted to
proving / disproving of
invariants due to nature of
state abstractions

Unnecessary state savings
and state explosion
problem

Bug finding search in model
checking via directed
greybox fuzzing

✓Cover the whole
specification language of
properties for a well-known
and popular temporal logic
– LTL

✓Fuzzing for more
advanced oracles than
simple oracles such as
crashes and overflows

✓No state explosion problem
as in model checking

Linear-time Temporal Logic guided Greybox Fuzzing

Evaluation

14

Research Questions

RQ1 Effectiveness: How effective is LTL-Fuzzer at finding LTL property violations?

RQ2 Comparison: How does LTL-Fuzzer compare to the state-of-the-art tools in terms of

finding LTL property violations?

RQ3 Usefulness: How useful is LTL-Fuzzer in revealing LTL property violations in real-

world systems?

Subject Programs

• ProFTPD • Pure-FTPd

• Live555 • OpenSSL

• OpenSSH • TinyDTLS

• Contiki-Telnet

Comparisons

• AFLGo

• AFLLTL

• L+NuSMV

Our tool LTL-Fuzzer and dataset

are publicly available at:

https://github.com/ltl

fuzzer/LTL-Fuzzer

https://github.com/ltlfuzzer/LTL-Fuzzer

Linear-time Temporal Logic guided Greybox Fuzzing

Effectiveness & Comparison

15

For RQ1 (effectiveness):

LTL-Fuzzer discovered violations for

all 14 properties derived from known

CVEs

For RQ2 (Comparison):

• Our tool found the most
violations

• Our tool was the fastest

Linear-time Temporal Logic guided Greybox Fuzzing

Usefulness

16

Extract 50 LTL properties

from FTP, RTSP, SSL, SSH,

DTLS and Telnet RFCs

For RQ3 (Usefulness):

Out of 50 LTL properties,

15 new property

violations are found and

12 CVEs are assigned

Linear-time Temporal Logic guided Greybox Fuzzing

Summary

17

Thanks!!

