
Program Environment Fuzzing

Ruijie Meng

The 31st ACM Conference on Computer and Communications Security (CCS) 2024

Gregory J. Duck Abhik Roychoudhury

ruijie@comp.nus.edu.sg

gregory@comp.nus.edu.sg

abhik@comp.nus.edu.sg

Program Environment Fuzzing

input

Programs interacting with Environments

2

Complex Execution
EnvironmentProgram

output

Computer Program:
 gnome-calculator

Complex Execution Environment:
(706´ environment sources in total)
• 674´ regular files, including

configuration, cache, and GUI
resources (icons/fonts/themes)

• 7´ socket connections to the
windowing systems, session manager,
and other services

• Miscellaneous (e.g., special files,
devices and stderr)

Program Environment Fuzzing

Finding Bugs in Programs via Fuzzing

3

Fuzz testing (fuzzing) is one of the most promising techniques to
automatically discover bugs at scale

• e.g., as of August 2023, Google OSS-Fuzz has helped identify and fix over 10,000
vulnerabilities and 36,000 bugs across 1,000 projects

Widely-used fuzzers:
• AFL for fuzzing a single file specified by

the command
• AFLNet for fuzzing network traffic from

a single port

Essentially, most
existing fuzzers only

fuzz a single
environment input

Program Environment Fuzzing

Limitations with Conventional Fuzzing

4

In the view of conventional fuzzing, the full execution environment is simplified as
one with a single input, and all other environments are considered as “static”

1. Input selection: which input should be fuzzed?
• A small fraction is subjected to fuzzing (e.g.,

only explore 1/706 in this example)
• No available fuzzer

2. Environment Modelling: how to handle other inputs?
• Fix all the remaining environments
• Build a model of possible environmental

interactions

Users need to make two key decisions before fuzzing:

Program Environment Fuzzing

Our Approach
Conventional Fuzzing vs Our Approach:

• Input Selection:

 Which input should be fuzzed?

 All environmental inputs are fuzzed

• Environment Modelling:

 How to handle other inputs?

 Avoid modelling. The inputs are executed under
a given environment and the effect of different
environments is captured by mutating the
environmental interactions

5

How to capture the full
environmental inputs?
Most user-mode applications in Linux
interact with the environment through the
kernel/user-mode interface. By capturing
system calls, we inherently capture the full
environmental interactions of the program

Program Environment Fuzzing

Program Environment Fuzzing

6

Two Main Phases

Tree-based Search to address two challenges:
 (1) statefulness and (2) throughput

Relaxed Replay for
divergent behaviors

Program Environment Fuzzing

Evaluation

7

Research Questions
RQ.1 New bugs. Can Efuzz find previously unknown bugs in real-world and widely-used programs?
RQ.2 Code coverage. How much more code coverage does EFuzz achieve compared to baseline?

Subject Programs:
• Efuzz is a generic fuzzer capable of testing a broad spectrum of user-mode programs in Linux
• Two categories of programs for evaluation:
 Network protocols and GUI/UI applications

Comparison tools:
• AFLNet and Nyx-Net

Our tool is publicly available:

Program Environment Fuzzing

New Bugs

8

Read bound value from messages
of the windowing system and
access the message contents
based on the bound

à if the bound value and real
length are inconsistent ??

Cache current entries over a
directory, and then directly access
entries in the following

à if in inconsistent dynamic
environment ??

Program Environment Fuzzing

Code Coverage

9

EFuzz covers 46.52% and 30.80% more code than AFLNet and Nyx-Net, respectively, with
most additional code coverage resulting from program environment fuzzing.

Program Environment Fuzzing

Summary

10

THANKS!!

