@ The 31st ACM Conference on Computer and Communications Security (CCS) 2024

Program Environment Fuzzing

Gregory J. Duck Abhik Roychoudhury

NUS

National University
of Singapore

ruijie@comp.nus.edu.sg
gregory@comp.nus.edu.sg

abhik@comp.nus.edu.sg

Programs interacting with Environments

P e i T TR

Complex Execution
Environment

—— -

=0
-
o
gQ
-
o
=
3 S

e e

Computer Program: Complex Execution Environment:

gnome—calculator (706x environment sources in total)
* 0674x regular files, including
config windowing) configuration, cache, and GUI
"""" L D1 syst (icons/fonts/themes)
000 sysiem resources (i1cons/tonts emes
resource o0 session T7x socket connections to the
—— L L s ™' manager windowing systems, session manager,
cache o i and other services
T ; b at-Spi
e v v e Miscellaneous (e.g., special files,
| | e stdout | | stdemr | - > nscd devices and stderr)

Program Environment Fuzzing

Finding Bugs 1n Programs via Fuzzing

Fuzz testing (fuzzing) is one of the most promising techniques to
automatically discover bugs at scale

* ¢.g., as of August 2023, Google OSS-Fuzz has helped identify and fix over 10,000

vulnerabilities and 36,000 bugs across 1,000 projects

Analyze

Coverage L feedback

Bitmap d

Seed

Assign
Energy

»

Mutate

|
|
Execute !

~
N
\
\ (]
\
|
|

Widely-used fuzzers:

the command

* AFL for fuzzing a single file specified by

| * AFLNet for fuzzing network traffic from
| a single port
-\

~

/

Essentially, most
existing fuzzers only
fuzz a single
environment input

Program Environment Fuzzing

N

Limitations with Conventional Fuzzing

In the view of conventional fuzzing, the full execution environment is simplified as

one with a single input, and all other environments are considered as “static”

confi windowin,
|| % N systemg
resource oo 7
"""" O e > ,f,%%sa'gg, 9 other ; Windotwing
| cache [hy... : environmen system
=II V """ ‘“7 ------ > at-spi (nof captured)
------- [Stdout] [stderr] > _mscd |
Users need to make two key decisions before fuzzing:
1. Input selection: which input should be fuzzed? 2. Environment Modelling: how to handle other inputs?
* A small fraction is subjected to fuzzing (e.g., * Fix all the remaining environments
only explore 1/706 in this example) * Build a model of possible environmental

* No available fuzzer Interactions

Program Environment Fuzzing

Our Approach

Conventional Fuzzing vs Our Approach:

* Input Selection:

Which input should be fuzzed?

@ All environmental inputs are fuzzed
* Environment Modelling:

How to handle other inputs?

@ Avoid modelling. The inputs are executed under
a given environment and the effect of different

environments 1s captured by mutating the
environmental interactions

How to capture the full
environmental inputs?

Most user-mode applications in Linux
interact with the environment through the
kernel/user-mode interface. By capturing
system calls, we inherently capture the full
environmental interactions of the program

Program Environment Fuzzing

Program Environment Fuzzing

Input :Program P, environment interaction &
Output :Crashing events Cx
Globals : Input-specific corpora Sg

1 func EFuzz (P, &):

(T S
| . |
., Two Main Phases ,
| |
N o o o o o M M e e /7
/ g NEOEROEROEROER R —————————————————————— -~ \
/
' ,/(recv(S))— ------ (send(f!)}'-—“-(read(o)) @ ",““ (©) \|
| ',"":', ------ ® .,."";,(vrite(ib---—— send(3))— ----- —(recv(S)) @ |
I D(read(O))‘é'—"--(send(B)}""— recv(3));‘:------(send(3))———--(recv(3) :/-"—-(vrrite(l) —'-"-(exit(o))@ |
I INIT READY ‘.“::::\ DISPLAY CLOSING I
B DD 5 :
I (recv(S)) ------ —erite(lD— ------ Grite(iD—--—— exit(O)) @ |
| |
| Tree-based Search to address two challenges: |
N (1) statefulness and (2) throughput !

2 o < Record(P, &) > Recording —
3 for E € o do Sg «— {E}
1 repeat
5 | FuzzReplay(P, o)
6 until timeout reached or abort
7 func FuzzReplay (P, o): > Replay with Fuzzing —
8 I_ exeC(P[replace syscall with FuzzSyscall,isBranche—false]> O)
9 func FuzzSyscall(e): > Tree-based Search —
10 if isBranch then
%rctum EmulateSyscall(e, o) > Divergence Handling
pm————— AT ~ 12 else /* if isSpine then */
/ ! \\ 13 E « head(c); o « tail(o)
[o EA
. I 14 if —isInput(e) then return ReplaySyscall (E)
I Q[O] : 15 for E' € Sg,i € 1..energy(E’) do
: Qll] 1 16 E"” « mutate(E")
, BIEHEOCHHGEHE] : ~ pid — fork()
I 18 if pid = 0 then & In child:
: Relaxed Replay for : 19 g isBranch « true
\ divergent behaviors /' 20 return ReplaySyscall(E")
e e e e e = s 21 else & In parent:
22 waitpid(pid, &status)
23 if isCrash(status) then add E” to Cx
24 if isInteresting(E"’) then add E” to Sg
25 return ReplaySyscall(E) > Grow Spine —

Evaluation

Research Questions
RQ.1 New bugs. Can Efuzz find previously unknown bugs in real-world and widely-used programs?

RQ.2 Code coverage. How much more code coverage does EFuzz achieve compared to baseline?

Subject Programs:

» Zfuzz is a generic fuzzer capable of testing a broad spectrum of user-mode programs in Linux
e Two categories of programs for evaluation:
Network protocols and GUI/UI applications

Comparison tools:
. AFLNet and Nyx-Net GJDuck/EnvFuzz

Our tool is publicly available:

Program Environment Fuzzing ‘

New Bugs

ID | Subject I Bug Description Environment l Bug Type Bug Status
1 Demtk Failed to check bounds of stored dicom.dic data Cached data Buffer overflow CVE-requested, fixed
2 Exim Failed to check bounds of a corrupted resolv.conf Configuration Buffer overflow Reported
3 Exim Glibc failed to handle an empty passwd line Special file Null pointer dereference Reported
4 Kamailio Improperly handle a corrupted client request Socket Null pointer dereference Reported
5 Live555 Improperly handle a malicious SETUP client request Socket Heap use after free CVE-granted, fixed
6 | Live555 Failed to check bounds of a corrupted test .mkv Media resource | Buffer overflow Reported
7 OpenSSH | Improperly handle a corrupted sshd_config Configuration Null pointer dereference CVE-requested, fixed
8 OpenSSH | Improperly handle a corrupted gai . conf Configuration Null pointer dereference Reported
9 Pure-FTPd | Glibc failed to handle a corrupted timezone file Time resource Null pointer dereference Reported
10 | gedit Improperly handle a null value in parse_settings () Configuration Null pointer dereference CVE-granted
11 | gedit Improperly handle a null value from XRRGetCrtcInfo() Socket Null pointer dereference CVE-granted

| 12 | Calculator | Failed to check bounds of requests, events and error IDs Socket Buffer overflow CVE-granted, fixed /|
13 | Calculator | Failed to check null value from XIQueryDevice () Socket Null pointer dereference CVE-granted
14 | Calculator | Improperly handle a corrupt DBUS message Socket Null pointer dereference CVE-requested, fixed
15 | Monitor Improperly handle corrupted loaders. cache Cached data Bad free CVE-granted
16 | Monitor Failed to handle a corrupted gtk.css Theme resource | Null pointer dereference CVE-requested, fixed
17 | Glxgears Failed to check bounds of numAttribs in messages Socket Buffer overflow CVE-granted
18 | Glxgears Failed to check bounds of the string length Socket Buffer overflow CVE-granted
19 | MC Failed to handle a corrupted terminfo Configuration Null pointer dereference =~ CVE-granted
20 | MC Improperly handle a corrupted xterm-256color Configuration Arithmetic exception CVE-granted
21 | MC Improperly process error handler of x_error_handler() Socket Null pointer dereference =~ CVE-granted
22 | nano Failed to handle a corrupted xterm file Configuration Null pointer dereference _Reported
23 | nano Failed to check the inconsistent directory in disk Cached data Null pointer dereference ~CVE-granted, fixed '
24 [Vim Failed to handle a corrupted xterm-256color Configuration Null pointer dereference ~ CVE-granted
25 | Vim Failed to handle a corrupted viminfo file Cached data Null pointer dereference ~ CVE-granted, fixed
26 | Wireshark | Failed to check null pointer in initializeAllAtoms () Socket Null pointer dereference ~ CVE-granted, fixed
27 | Xcale Failed to handle null pointer from XOpenDisplay () Socket Null pointer dereference = CVE-requested, fixed
28 | Xcale Failed to check write boundary in _XkbReadKeySyms () Socket Out-of-bounds write CVE-granted, fixed
29 | Xcale Failed to check read boundary in _XUpdateAtomCache() Cached data Out-of-bounds read CVE-requested, fixed
30 | Xpdf Improperly handle invalid and corrupted locale data Configuration Null pointer dereference Reported
31 | Xpdf Improperly handle invalid paper size in configuration Configuration Null pointer dereference Reported
32 | Xpdf Failed to check pointer boundary returned from response ~ Socket Bad free CVE-requested, fixed
33 | Xpdf Failed to check array boundary returned from X server Socket Out-of-bounds read CVE-requested, fixed

Program Environment Fuzzing

Read bound value from messages
of the windowing system and
access the message contents
based on the bound

- if the bound value and real
length are inconsistent ??

Cache current entries over a
directory, and then directly access
entries in the following

—> if in inconsistent dynamic
environment ?? ﬁﬁ

It

Code Coverage

15000
5 11000

7000

3000

#Branch Coverage

8400

=
=

= 7600

6800

=

#Branch Coverage

6000

DCMTK DNSmasq Exim Kamailio
e & — — — — — — — - 6000 4800
________________ 4000/ | sy e s s o e | 3900
=== AFLNet === AFLNet ! === AFLNet === AFLNet
— = Nyx-Net 2000 — = Nyx-Net 3000 " — = Nyx-Net 7000 — = Nyx-Net
= EFuzz = EFuzz I = EFuzz = EFuzz
0 10 20 0 10 20 0 10 20 0 10 20
OpenSSH OpenSSL ProFTPD Pure-FTPd
20000
27000) 7000| T
16000 ———]
210000 |] 5000 e
-
15000 12000 ,"P
— =~ AFLNet - == AFLNet — ==~ AFLNet 3000 —=- AFLNet
—=-= Nyx-Net = Nyx-Net ~-= Nyx-Net — = Nyx-Net
8000
— EFuz 9000 — EFuz — EFuz 1000 — EFuz
0 10 20 0 10 20 0 10 20 (10 20
Time (in hours) Time (in hours) Time (in hours) Time (in hours)

15000

110001 |

7000

3000

2700

2100

1500

900

Live5S55
—
=== AFLNet
=== Nyx-Net
= EFuzz
0 10 20
TinyDTLS
’.'f"_""'—_——'-‘
=== AFLNet
=== Nyx-Net
= EFuzz
10 20

Time (in hours)

EFuzz covers 46.52% and 30.80% more code than AFLNet and Nyx-Net, respectively, with
most additional code coverage resulting from program environment fuzzing.

Program Environment Fuzzing

Summary

Program Environment Fuzzing

Programs interacting with Environments Limitations with Conventional Fuzzing

In the view of conventional fuzzing, the full execution environment is simplified as

output i
_ Complex Execution i one with a single input, and all other environment is not captured
«— Environment H

i [corg_Jy_ = -

inpa
EFuzz demo

Computer Program:

gnono-calculator

ed Search to address two challenges:
statefulness and throughput

yx-Net, respectively, with
onment fuzzing.

Program Environment Fuzzing

