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Programs interacting with Environments
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Computer Program: Complex Execution Environment:

gnome—calculator (706x environment sources in total)
* 0674x regular files, including
config windowing ) configuration, cache, and GUI
"""" L D1 syst (icons/fonts/themes)
000 sysiem resources (i1cons/tonts emes
resource o0 session  T7x socket connections to the
—— L L s ™' manager windowing systems, session manager,
cache o i and other services
T ; b at-Spi
e v v e Miscellaneous (e.g., special files,
| | e stdout | | stdemr | - > nscd devices and stderr)
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Finding Bugs 1n Programs via Fuzzing

Fuzz testing (fuzzing) is one of the most promising techniques to
automatically discover bugs at scale

* ¢.g., as of August 2023, Google OSS-Fuzz has helped identify and fix over 10,000

vulnerabilities and 36,000 bugs across 1,000 projects
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Widely-used fuzzers:

the command

* AFL for fuzzing a single file specified by

| * AFLNet for fuzzing network traffic from
| a single port
-\

~

/

Essentially, most
existing fuzzers only
fuzz a single
environment input
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Limitations with Conventional Fuzzing

In the view of conventional fuzzing, the full execution environment is simplified as

one with a single input, and all other environments are considered as “static”

confi windowin,
|| ....... % ...... N systemg
resource oo 7
"""" O e > ,f,%%sa'gg, 9 other ; Windotwing
| cache [hy... : environmen system
=II V """ ‘“7 ------ > at-spi (nof captured)
------- [Stdout] [stderr] > _mscd |
Users need to make two key decisions before fuzzing:
1. Input selection: which input should be fuzzed? 2. Environment Modelling: how to handle other inputs?
* A small fraction is subjected to fuzzing (e.g., * Fix all the remaining environments
only explore 1/706 in this example) * Build a model of possible environmental

* No available fuzzer Interactions
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Our Approach

Conventional Fuzzing vs Our Approach:

* Input Selection:

Which input should be fuzzed?

@ All environmental inputs are fuzzed
* Environment Modelling:

How to handle other inputs?

@ Avoid modelling. The inputs are executed under
a given environment and the effect of different

environments 1s captured by mutating the
environmental interactions

How to capture the full
environmental inputs?

Most user-mode applications in Linux
interact with the environment through the
kernel/user-mode interface. By capturing
system calls, we inherently capture the full
environmental interactions of the program
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Program Environment Fuzzing

Input :Program P, environment interaction &
Output :Crashing events Cx
Globals : Input-specific corpora Sg

1 func EFuzz (P, &):

(T S
| . |
., Two Main Phases ,
| |
N o o o o o M M e e /7
/ g NEOEROEROEROER R —————————————————————— -~ \
/
' ,/(recv(S))— ------ (send(f!)}'-—“-(read(o)) @ ",““ (©) \|
| ',"":', ------ ® .,."";,(vrite(ib---—— send(3))— ----- —(recv(S)) @ |
I D(read(O))‘é'—"--(send(B)}""— recv(3));‘:------(send(3))———--(recv(3) :/-"—-(vrrite(l) —'-"-(exit(o))@ |
I INIT READY ‘.“::::\ DISPLAY CLOSING I
B DD 5 :
I (recv(S)) ------ —erite(lD— ------ Grite(iD—--—— exit(O)) @ |
| |
| Tree-based Search to address two challenges: |
N (1) statefulness and (2) throughput !

2 o < Record(P, &) > Recording —
3 for E € o do Sg «— {E}
1 repeat
5 | FuzzReplay(P, o)
6 until timeout reached or abort
7 func FuzzReplay (P, o): > Replay with Fuzzing —
8 I_ exeC(P[replace syscall with FuzzSyscall,isBranche—false]> O)
9 func FuzzSyscall(e): > Tree-based Search —
10 if isBranch then
%rctum EmulateSyscall(e, o) > Divergence Handling
pm————— AT ~ 12 else /* if isSpine then */
/ ! \\ 13 E « head(c); o « tail(o)
[ o EA
. I 14 if —isInput(e) then return ReplaySyscall (E)
I Q[O] : 15 for E' € Sg,i € 1..energy(E’) do
: Qll] 1 16 E"” « mutate(E")
, BIEHEOCHHGEHE] : ~ pid — fork()
I 18 if pid = 0 then & In child:
: Relaxed Replay for : 19 g isBranch « true
\ divergent behaviors /' 20 return ReplaySyscall(E")
e e e e e = s 21 else & In parent:
22 waitpid(pid, &status)
23 if isCrash(status) then add E” to Cx
24 if isInteresting(E"’) then add E” to Sg
25 return ReplaySyscall(E) > Grow Spine —




Evaluation

Research Questions
RQ.1 New bugs. Can Efuzz find previously unknown bugs in real-world and widely-used programs?

RQ.2 Code coverage. How much more code coverage does EFuzz achieve compared to baseline?

Subject Programs:

» Zfuzz is a generic fuzzer capable of testing a broad spectrum of user-mode programs in Linux
e Two categories of programs for evaluation:
Network protocols and GUI/UI applications

Comparison tools:
. AFLNet and Nyx-Net GJDuck/EnvFuzz

Our tool is publicly available:
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New Bugs

ID | Subject I Bug Description Environment l Bug Type Bug Status
1 Demtk Failed to check bounds of stored dicom.dic data Cached data Buffer overflow CVE-requested, fixed
2 Exim Failed to check bounds of a corrupted resolv.conf Configuration Buffer overflow Reported
3 Exim Glibc failed to handle an empty passwd line Special file Null pointer dereference  Reported
4 Kamailio Improperly handle a corrupted client request Socket Null pointer dereference  Reported
5 Live555 Improperly handle a malicious SETUP client request Socket Heap use after free CVE-granted, fixed
6 | Live555 Failed to check bounds of a corrupted test .mkv Media resource | Buffer overflow Reported
7 OpenSSH | Improperly handle a corrupted sshd_config Configuration Null pointer dereference CVE-requested, fixed
8 OpenSSH | Improperly handle a corrupted gai . conf Configuration Null pointer dereference  Reported
9 Pure-FTPd | Glibc failed to handle a corrupted timezone file Time resource Null pointer dereference Reported
10 | gedit Improperly handle a null value in parse_settings () Configuration Null pointer dereference CVE-granted
11 | gedit Improperly handle a null value from XRRGetCrtcInfo()  Socket Null pointer dereference CVE-granted

| 12 | Calculator | Failed to check bounds of requests, events and error IDs Socket Buffer overflow CVE-granted, fixed /|
13 | Calculator | Failed to check null value from XIQueryDevice () Socket Null pointer dereference CVE-granted
14 | Calculator | Improperly handle a corrupt DBUS message Socket Null pointer dereference CVE-requested, fixed
15 | Monitor Improperly handle corrupted loaders. cache Cached data Bad free CVE-granted
16 | Monitor Failed to handle a corrupted gtk.css Theme resource | Null pointer dereference CVE-requested, fixed
17 | Glxgears Failed to check bounds of numAttribs in messages Socket Buffer overflow CVE-granted
18 | Glxgears Failed to check bounds of the string length Socket Buffer overflow CVE-granted
19 | MC Failed to handle a corrupted terminfo Configuration Null pointer dereference =~ CVE-granted
20 | MC Improperly handle a corrupted xterm-256color Configuration Arithmetic exception CVE-granted
21 | MC Improperly process error handler of x_error_handler() Socket Null pointer dereference =~ CVE-granted
22 | nano Failed to handle a corrupted xterm file Configuration Null pointer dereference _Reported
23 | nano Failed to check the inconsistent directory in disk Cached data Null pointer dereference ~CVE-granted, fixed '
24 [ Vim Failed to handle a corrupted xterm-256color Configuration Null pointer dereference ~ CVE-granted
25 | Vim Failed to handle a corrupted viminfo file Cached data Null pointer dereference ~ CVE-granted, fixed
26 | Wireshark | Failed to check null pointer in initializeAllAtoms () Socket Null pointer dereference ~ CVE-granted, fixed
27 | Xcale Failed to handle null pointer from XOpenDisplay () Socket Null pointer dereference = CVE-requested, fixed
28 | Xcale Failed to check write boundary in _XkbReadKeySyms () Socket Out-of-bounds write CVE-granted, fixed
29 | Xcale Failed to check read boundary in _XUpdateAtomCache()  Cached data Out-of-bounds read CVE-requested, fixed
30 | Xpdf Improperly handle invalid and corrupted locale data Configuration Null pointer dereference  Reported
31 | Xpdf Improperly handle invalid paper size in configuration Configuration Null pointer dereference Reported
32 | Xpdf Failed to check pointer boundary returned from response ~ Socket Bad free CVE-requested, fixed
33 | Xpdf Failed to check array boundary returned from X server Socket Out-of-bounds read CVE-requested, fixed
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Read bound value from messages
of the windowing system and
access the message contents
based on the bound

- if the bound value and real
length are inconsistent ??

Cache current entries over a
directory, and then directly access
entries in the following

—> if in inconsistent dynamic
environment ?? ﬁﬁ
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Code Coverage
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EFuzz covers 46.52% and 30.80% more code than AFLNet and Nyx-Net, respectively, with
most additional code coverage resulting from program environment fuzzing.
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Summary

Program Environment Fuzzing

Programs interacting with Environments Limitations with Conventional Fuzzing

In the view of conventional fuzzing, the full execution environment is simplified as

output i
_ Complex Execution i one with a single input, and all other environment is not captured
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