30th ACM Conference on Computer and Communications Security (CCS 2023) = & N U S

% National University
of Singapore

Greybox Fuzzing of Distributed
Systems
Ruijie Meng
National University of Singapore

ruijie@comp.nus.edu.sg

Co-authors: George Pirlea, Abhik Roychoudhury and Ilya Sergey

Bug In Distributed Systems

& \\orkflow of the Raft consensus protocol:
Clients

Cluster A
Consensus State) (Consefisus State) oNsSensus

Leader:
Manage replicated logs

State)

z, 6
Log \ *_‘
X<—3|y<«2|X«1|z¢<-6

AN

x<—3 y<—2 X<«1 t

Snapshot:
compact log entries

J

z, 6
Log \ *_‘
X<—3|y<«2|X<«1(z<-6

_

J

Configuration change:
Add or remove members

dule Machine Module Machine dule Machme - ~
o - & aE i ‘
‘ 1 « Me
y 2 ‘ y 2
Server

Bug In Distributed Systems

& \Membership rollback bug in Canonical Dqlite:
SI SZ S3 S4' S5 Schedule

1
@ Configuration - Fault,:
Change Remove S,
145 int membershipRellback(struct raft *r){ -
146 . " Fault,:
158 S/ Fetch the last committed configuration entry . TR TR~ Network Partition
159 entry = logGet(ir->log, r->config_index); @ Conﬁguratlon #{S..S,}.#{S:. 5. S5))
160 assert(entry !'= NULL) ;\ Change -
176} | Fault;:
3-
. . - | @ Snapshot Crash S,
986 static int deleteConflictingEntries(){ -
il Fault,:
1007 A¢ Possibly discard uncommitied config changes % ;
1008 if {unc:ammitted_can.fig_index »= entry_index}{ Partition StOp
1009 rv = membershipRollback(r);
1010 } @Conflicting ®Entry
1042} Entry Deletion ®Entry Replica
I . :
®Membership Replica

Rollback

Testing Distributed Systems

Systematic testing = whitebox fuzzing

v Exercise complex event interleavings to find “deep” bugs

X Heavyweight: require a manually-written pervasive test
harness or a system-level interposition layer

X State explosion: not able to scale to large systems

Stress testing (e.g., Jepsen) = blackbox fuzzing

v Low cost of adoption
v" commendable scalability @
X Ineffective to reach deep program behaviors

Greybox Fuzzing?

Can we find a balance between
ease-of-use and effectiveness??

But there is no greybox fuzzing

for distributed systems.

We explore this opportunity to extend
Jepsen with feedback guidance from
the program behaviors

Conventional Greybox Fuzzing

& \\/e need to consider three questions while greybox fuzzing distributed systems:

Algorithm 1 Coverage-based Greybox Fuzzing

Input: Seed Inputs S

1: Ty =0 Q3: How to mutate inputs?
9. T — §
Q1: What is the input space 3. 11; T l) then A3: Incrementally select
to distributed systems that i: add empty file to T action by action to construct a
could be explored adaptively? > end if new schedule via Q-learning
fi: repeat
Al: Schedules to inject 7. t= CHOOSENEXT(T)
faults (e.g., network partition) % P = ASSIGNENERGY(f)
9: for i from 1 to p do
10: t' = MUTATE_INPUT(t)
11: if ' crashes then Q2: What can represent
12: add t' to Tx ; program behaviors of
i: elsi;fi I:i[i\;l‘?li.li.&i'flx{}l:t) then distributed systems?
15: end if A2: Lamport timelines that
16: end for is analogues to code paths

17: until timeout reached or abort-signal
Output: Crashing Inputs Ty

Greybox Fuzzing of Distributed Systems

Algorithm 1: Greybox Fuzzing of Distributed Systems

11

12

13

14

16

17

Input: Py: system under test (SUT)
Input: Nem, Faults: a nemesis and the faults it can enact

Input: Oracles: a set of test oracles for bug detection
lnll:ut: S: number of steps in each schedulge AS:I 52 S Ss Schedule
Input: T: total time budget for testing (@ Configuration ‘ - Fault,:
Output: Bugs: a set of bugs detected Remove S,
Pg « instrumentSystem (Fy) - Faulty;
Policy « { initState , Faults} @ Configuration > | % Network Partition
repeat Change 4_(# {81, 85}, #{S3, 54, S5})
curState «— initState . . I Fault;:
repeat Timeline- @ Snapshot Crash S,
fault « Policy.getNextFault (curState) — clrivVen Testing - Fault,:
Nem.enactFault(fault) Partition Stop
events < observeSystemUnderTest (Pg) |
rﬁm&ﬁﬂ& «— constructTimeline (events) @Conﬂictipg @eqry
— Entry Deletion ®Entry Replica
nextState «— abstractTimeline (timeline) @Memlbership Replica

rwd « calculateReward (curState, fault, nextState)

Policy «— learn (Policy, curState, fault, rwd)

\curState « nextState

until maximum steps S reached
resetSystemUnderTest (Pr)
until time budget T exhausts

Bugs « Oracles.identifyBugs (events)

Rollback

Reactive Fuzzing
using Q-learning

Evaluation

Research Questions
RQ.1 Coverage achieved by Mallory: Can Mallory cover more distinct program states than Jepsen?

RQ.2 Efficiency of bug finding: Can Mallory find bugs more efficiently than Jepsen?

RQ.3 Discovering new bugs: Can Mallory discover new bugs in rigorously-tested distributed
system implementations?

Subject Programs Our tool Mallory and dataset are
Braf Dl _ publicly available at:
e Comparison o igithub.com
oI el Jepsen dsfuzz/mallory

« ScyllaDB + TIKV

Greybox Fuzzing of Distributed Systems (CCS’23)

https://github.com/dsfuzz/mallory
https://github.com/dsfuzz/mallory

RQ.1 State Coverage

Braft Dqlite MongoDB

1.5k

1.0k 1.0k

1.0k 750 750

500 500

500 - o~
—— Mallory | 250 —— Mallory | 250 —— Mallory
—-— Jepsen / —— Jepsen —— Jepsen
0 0 0
0 10 20 0 10 20 0 10 20
RedisRaft ScyllaDB TiKV
1.5k
750
1.0k 10k
500
500 500 e
—— Mallory —— Mallory | 250} /4~ —— Mallory
—-—- Jepsen —— Jepsen ——- Jepsen
0 0 0
0 10 20 0 10 20 0 10 20
#Time (hours) #Time (hours) #Time (hours)

Cover same state
number 2.24x faster

- N\
Subject lState—impr Speed-u pI A1z U
Braft 59.34% 2.28x 1.00 <0.01
Dglite 76.14% 2.56% 1.00 <0.01
MongoDB 36.48% 1.57% 1.00 <0.01
Redis 58.92% 2.06x 1.00 =0.01
SeyllaDB 48.82% 1.88% 1.00 =0.01
TiKV 45.93% 3.07x% 1.00 <0.01
AVG 54.27% 2.24% - -

Cover 54.27% more states

RQ.2 Efficiency of Bug Finding

Time to exposure

Bug b TYPE of hug MarLLory JEPSEN ﬁm
Dqglite-416 | Null pointer deference 0.76h 1.44h 1.00
Dqlite-356 | Snapshot installing failure T/O T/O 0.50
Dqglite-338 | Election fatal with split votes 0.16h 0.16h 0.50
Dqglite-327 | Member removal failure 0.06h 0.05h 049
Dqlite-324 | Log truncation failure 5.94h T/O 1.00
Dqlite-323 | Membership rollback failure 8.68h T/O 1.00
Daqlite-314 | Crashing on disk failure T/O T/O 0.50
Redis-54 Snapshot panic 3.33h 5.00h 0.95
Redis-53 Committed entry conflicting 0.87h 1.17h 0.89
Redis-51 Not handling unknown node 1.66h 6.40h 1.00
Redis-44 Loss of committed write logs 0.34h 0.58h 0.60
Redis-43 Snapshot index mismatch 0.16h 0.16h 0.50
Redis-42 Snapshot rollback failure 0.29h 0.26h 0.50
Redis-28 Split brain after node removal | 9.56h T/O 1.00
Redis-23 Aborted read with no leader 7.29h T/O 1.00
Redis-17 Split brain and update loss 11.06h T/O 1.00
Bugs exposed in total 14 9 -

Average time usage 6.13h 11.45h -

Speed-up on time usage - 1.87x% -

Find more bugs
Find bugs 1.8/ faster

RQ.3 Discovery of New Bugs

ID | Subject | Bug description Bug checker Bug status | JEPSEN?
1 | Braft Read stale data after a newly written update is visible to others EiLe Investigating v
2 | Braft Leak memory of the server when killed before its status becomes running ASan CVE-Granted, fixed X
3 | Dglite Two leaders are elected at the same term due to split votes Log checker Confirmed X
4 [Dglite No leader is elected in a healthy cluster with an even number of nodes Log checker Confirmed, fixed X
5 | Dqlite A node reads dirty data that is modified but not committed by another node ErLE Confirmed X
6 | Dglite Lose write updates due to split brain EiLe Confirmed X
7 | Dqlite A null pointer is dereferenced due to missing the pending configuration ASan CVE-Requested v
8 | Dglite Leak allocated memory when failing to extend entries ASan CVE-Requested, fixed X
9 [Dglite Buffer overflow happens while restoring a snapshot ASan CVE-Requested X

10 | Dglite A node has an extra online spare Log checker Confirmed X

11 | Dglite Violate invariant as a segment cannot open while truncating inconsistent logs Log checker =~ CVE-Requested X

12 | MongoDB | Not repeatable read due to missing the local write update ELLE Confirmed X
13 | MongoDB | Not read committed due to missing the newly written update EiLe Confirmed X
14 | Redis Read stale data after new data is written to the same key EiLe Confirmed X
15 | Redis Buffer overflow due to writing data to a wrong data structure ASan CVE-Granted, fixed X
16 | Redis Runtime panic on initializing a cluster due to database version mismatch Log checker = CVE-Granted v
17 | TIKV No leader is elected for a long time in a healthy cluster Log checker Investigating X
18 | TiKV Lose write updates due to split brain EiLe Investigating X
19 | TIKV Runtime fatal error when one server cannot get context before the deadline Log checker =~ CVE-Granted X

20 | TIKV Runtime fatal error in a server when the placement driver is killed Log checker CVE-Granted X

21 | TiKV Runtime fatal error when failing to update max timestamp for the region Log checker =~ CVE-Granted X

22 | TiKV Monotonic time jumps back at runtime Log checker Investigating v

Discover 22 zero-day bugs and receive 6 CVE ID

10

ummary

Testing Distributed Systems Conventional Greybox Fuzzing Greybox Fuzzing of Distributed Systems

& We need to consider three questions while greybox fuzzing distributed systems: A = Coybos Famg o

Algorithm 1 Coverage-bised Greybox Fuzzing Kmprue: N Fair: 3 nemesis and the fats i can emact
it Craler & 1 of st orace for g desection

Greybox Fuzzing?

ic testing = whitebox fuzzing "\"“ll:: i Q3: How to mutate inputs? o e e

2T=§ ot . e f g et

¥ Exercise complex event interleavings to find “deep” bugs Can we find a balance between Q1: Whatis the input space 5. if T = 9 then A3: Incrementally select o - g

X Hea ight: require a m?n“a"y'.wrim" pervasive test ease-of-use and effectiveness?? mn;bmd symf; ::e - m;ull;x empty file to T ;t;onrrymhno Q?mn?cll . :.:.: { e . Fouind

harness or a system-level interposition layer o M"q:"d_) & repeat . N
ey : 1o inject 7. t= CHOOSENEXT(T) .
¥ State explosion: not able to scale to large systems But there is no greybox fuzzing faults (... network partition) * o |]t oty eenias iy
for distributed systems. I pyayrvnra IO

u if ' crashes then Q2: What can represent . imline — coaamracrTimelne {evenrsh
2 - nersitae — sharac Tumchne mclinc)

Stress testing (e.g., Jepsen) = blackbox fuzzing. 13
) - We explore this opportunity to extend
gl el i e Jepsen with feedback guidance from 18

X Ineffective to reach deep program behaviours the program observations 17: until timeout reached or abort-signal v | sl masiomum st 5 sesched
Output: Crashing Inputs Tx 5 | recysennteren ()
e

RQ.3 Discovery of New Bugs

Evaluation RQ.1 State Coverage

0 | et B demipion [y —— pe—

Research Questions T | il e o e O - = = PO [
RQ.l Coverage achieved by Mallory: Can Mallory cover more distinct system states than Jepsen? mmmber 2 245 faster o [i el FR
| Do | A mode e ity et b e ot ot by st e i Contemed M
RQ.2 Efficiency of bug finding: Can Mallory find bugs more efficiently than Jepsen? bt Contirmed :
RQ.3 Discovering new bugs: Can Mallory discover new bugs in rigorously-tested distributed Specdupl| Az U S x
system implementations? Tx || 100 <o0t - 2
256x || 100 <001 ul £
157x || 100 <omn o x
206x |[100 <001 W 5
Subject Programs Our tool Mallory and dataset are 1m5x || 100 <ot g ’
publicly available at: 307x ||100 <001 Gl .

« Baft + Dqlit — u
 Nemn Rt et o : :
SRR = * Jepsen dsfizz/mallos = 2
v : ;7

* ScyllaDB - TiKV
Cover 54.27% more states

Discover 22 zero-day bugs and receive 6 CVE ID

THANKS!!

	Slide 1: Greybox Fuzzing of Distributed Systems
	Slide 2: Bug in Distributed Systems
	Slide 3: Bug in Distributed Systems
	Slide 4: Testing Distributed Systems
	Slide 5: Conventional Greybox Fuzzing
	Slide 6: Greybox Fuzzing of Distributed Systems
	Slide 7: Evaluation
	Slide 8: RQ.1 State Coverage
	Slide 9: RQ.2 Efficiency of Bug Finding
	Slide 10: RQ.3 Discovery of New Bugs
	Slide 11: Summary

