
Detecting Concurrency Memory Corruption Vulnerabilities
Yan Cai∗

State Key Laboratory of Computer
Science, Institute of Software Chinese

Academy of Science
China

ycai.mail@gmail.com

Biyun Zhu
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Science, and University
of Chinese Academy of Sciences

China
zhuby@ios.ac.cn

Ruijie Meng
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Science, and University
of Chinese Academy of Sciences

China
mengrj@ios.ac.cn

Hao Yun
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Science, and University
of Chinese Academy of Sciences

China
yunhao@ios.ac.cn

Liang He
TCA, Institute of Software,

Chinese Academy of Sciences
China

heliang@iscas.ac.cn

Purui Su
TCA/SKLCS, Institute of Software,
Chinese Academy of Sciences, and
School of Cyber Security, University
of Chinese Academy of Sciences

China
purui@iscas.ac.cn

Bin Liang
School of Information,

Renmin University of China
China

liangb@ruc.edu.cn

ABSTRACT

Memory corruption vulnerabilities can occur in multithreaded exe-
cutions, known as concurrency vulnerabilities in this paper. Due
to non-deterministic multithreaded executions, they are extremely
difficult to detect. Recently, researchers tried to apply data race de-
tectors to detect concurrency vulnerabilities. Unfortunately, these
detectors are ineffective on detecting concurrency vulnerabilities.
For example, most (90%) of data races are benign. However, concur-
rency vulnerabilities are harmful and can usually be exploited to
launch attacks. Techniques based on maximal causal model rely on
constraints solvers to predict scheduling; they canmiss concurrency
vulnerabilities in practice. Our insight is, a concurrency vulnerabil-
ity is more related to the orders of events that can be reversed in
different executions, no matter whether the corresponding accesses
can form data races. We then define exchangeable events to identify
pairs of events such that their execution orders can be probably
reversed in different executions. We further propose algorithms to
detect three major kinds of concurrency vulnerabilities. To over-
come potential imprecision of exchangeable events, we also adopt
a validation to isolate real vulnerabilities. We implemented our

∗Yan Cai is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338927

algorithms as a tool ConVul and applied it on 10 known concur-
rency vulnerabilities and the MySQL database server. Compared
with three widely-used race detectors and one detector based on
maximal causal model, ConVul was significantly more effective
by detecting 9 of 10 known vulnerabilities and 6 zero-day vulner-
abilities on MySQL (four have been confirmed). However, other
detectors only detected at most 3 out of the 16 known and zero-day
vulnerabilities.

CCS CONCEPTS

• Software and its engineering → Multithreading; Software

testing and debugging.

KEYWORDS

Concurrency, Multithreaded, Race Conditions, Vulnerability

ACM Reference Format:

Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin
Liang. 2019. Detecting Concurrency Memory Corruption Vulnerabilities. In
Proceedings of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),

August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338927

1 INTRODUCTION

Memory corruption vulnerabilities are frequently exploited to launch
various attacks. Unfortunately, these vulnerabilities can also ex-
ist in multithreaded programs due to improper synchronizations
[56, 59]. In this paper, we call memory corruption vulnerabilities
caused by improper synchronizations in multithreaded programs as

706

https://doi.org/10.1145/3338906.3338927
https://doi.org/10.1145/3338906.3338927

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang

concurrencymemory corruption vulnerabilities or concurrency vulner-
abilities for short. They are extremely harmful and can be exploited
to launch severe attacks. For example, the notorious vulnerability
DirtyCow [2] in Linux kernel occurs in multithreaded environment
and can be exploited to gain root privileges for a normal user. It
has existed in Linux kernel for about ten years (from 2007 to 2016).
Hence, it is urgent to detect concurrency vulnerabilities.

However, the detection of concurrency vulnerabilities is challeng-
ing. One straightforward approach would be to explore all possible
thread interleaving (e.g., model checking approaches [15]). How-
ever, unlike sequential programs, the executions of multithreaded
programs suffer from interleaving space explosion problem [34]. In
practice, it is impossible to explore all executions of a multithreaded,
especially on large-scale programs.

A feasible solution is to "borrow" approaches on detecting con-
currency bugs [56]. Researchers have adopted data race (race for
short) detectors [20]. These detectors have been used to detect all
possible candidates for further detection of concurrency vulnera-
bilities [59]. However, it is ineffective to apply the approaches for
race detection to detect concurrency vulnerabilities. This is because
the two concepts are not the same one. A data race involves two
concurrent accesses to the same memory locations [20]; but a con-
currency vulnerability involves two or more memory operations
on a set of closely related memory locations [59].

Another kind of feasible approaches is based on maximal causal
models [47] to predict additional execution from a single one [19,
23]. Although the model is sound, it is too restricted and a tool
based on pure maximal causal model can miss real vulnerabilities
[19]. Besides, the prediction relies on constraint solver. Without
an efficient solver, the solving process will be time-consuming. In
practice, a tool usually adapts a relaxed model and, consequently,
compromises its ability (e.g., UFO [23] missed 80% known concur-
rency Use-After-Free vulnerabilities in our experiment).

In this paper, we target on detecting concurrency vulnerabilities
involvingmemory corruptions.We currently focus on three kinds of
concurrency memory corruptions including: Use-After-Free (UAF),
Null-Pointer-Dereference (NPD), and Double-Free (DF), which are
mostly considered to be caused by orders [46, 52].

Our insight is that, the key to detect concurrency vulnerabilities
is to determinewhether two ormore out of a set of events (operating
memory blocks) in a given execution are exchangeable. That is,
whether their occurrence orders can be different in alternative
executions.If so, they may cause a concurrency vulnerability.

From the above viewpoint, we define Exchangeable Events (Sec-
tion 3) to determine whether the orders of two events can be prob-
ably reversed. Although two events in a race defined by happens-
before relation [27] are also regarded to be exchangeable, it is strictly
based on synchronizations. Our exchangeable events are defined
across synchronizations. Hence, our definition has larger coverage.
Based on exchangeable events, we design three algorithms to detect
three kinds of concurrency vulnerabilities from correct executions.
As relaxed exchangeable events are not 100% precise exchangeable,
we further isolate real ones via scheduling.

We have implemented our framework as a prototype tool Con-
Vul. To evaluate it, we selected a set of 10 known concurrency vul-
nerabilities from a CVE database [1] and the latest MySQL server.

For comparison, we also selected three well-known and represen-
tative race detectors, as well as a recent work UFO that detects
concurrency UAFs. The experimental results show that, ConVul
significantly outperformed four tools. It detected 9 out of 10 known
vulnerabilities. But the three race detectors and UFO only detected
1 or 2 of them. On MySQL, ConVul reported 6 concurrency vulner-
abilities and 4 of them have been officially confirmed by MySQL
developers. However, the three race detectors only detected 1 of
the 6 zero-day concurrency vulnerabilities on MySQL. UFO failed
to detect any one of them.

In summary, this paper makes the following contributions:
• It proposes a concept known as (relaxed) exchangeable events
to describe pairs of events, indicating that the execution
orders of each pair of events can be reversed with a high
probability in alternative executions.
• It proposes three algorithms to detect three kinds of con-
currency vulnerabilities (UAF, NPD, and DF) from correct
executions.
• It develops a framework ConVul and reports a set of experi-
ments. The experimental result shows that, compared with
both race detectors and a recent work, ConVul is significant
effective on detecting both known concurrency vulnerabili-
ties and zero-day ones.

Our data is available at: https://github.com/mryancai/ConVul.

2 CHALLENGES

Due to the non-determinism property of multithreaded executions,
concurrency vulnerabilities only manifest themselves under cer-
tain thread interleaving and are extremely difficult to be detected.
Hence, traditional approaches (e.g., fuzzing) targeting on sequen-
tial programs seldom detect concurrency vulnerabilities. It is also
infeasible to explore all possible interleaving.

Recently, researchers discussed [56] and tried to apply approaches
on detecting concurrency bugs to detect concurrency vulnerabili-
ties [59]. The most promising ones are race detectors; because races
are widely considered as a cause to concurrency vulnerabilities and
there is also a category of vulnerabilities known as "Race condi-
tion" 1, where a race is theoretically defined to be two concurrent
accesses (unordered and with at least one write) to the same mem-
ory blocks [20]. Although this is indeed true, by focusing on races,
we actually focus on the correctness property of multithreaded
executions. Unfortunately, there is no gold rule to define races in
practice [7, 18, 32]. For example, among popular race detectors,
some are based on happens-before relations [20, 27] and some are
based on the lockset discipline [3, 45] as well as the hybrid of them
[49]. Hence, it is still unclear whether and how a race detector can
be well adopted to detect concurrency vulnerabilities. For exam-
ple, in a recent work [59], among all 24, 645 races in Linux kernel
reported by various race detectors, only 36 races are finally con-
firmed to be related to concurrency vulnerabilities. There are other
disadvantages by directly applying existing race detectors to detect
concurrency vulnerabilities.

Firstly, race detectors not only report false positives but also
miss true positives [33]. Even in our experiment (Section 6), 80%

1Note, race conditions are not completely the same as races, although some works do
not distinguish them [20].

707

 https://github.com/mryancai/ConVul

Detecting Concurrency Memory Corruption Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

acq(m)

free(p); //p=NULL

rel(m)

Thread t1 Thread t2

acq(m);

p->test();

rel(m);

Figure 1: A concurrency vulnerability involving no race.

of known concurrency vulnerabilities cannot be detected by three
popular race detectors.

Secondly, not all concurrency vulnerabilities can be detected
by race detectors. This is because that a race is restricted to two
concurrent accesses that are expected to occur in parallel. However,
a concurrency vulnerability does not have such a restriction; it can
even occur in a race-free multithreaded program, as long as the
involved accesses can have a different execution order. For example,
Figure 1 shows two threads: a thread t1 dereferences a pointer via
p->test(), and a second thread t2 frees the same pointer free(p). And
a concurrency UAF can occur if thread t2 executes all its three lines
before thread t1. However, the two accesses in the UAF (p->test()
and free(p)) are well ordered by the same lock m, no matter which
thread executes first. Hence, no race detectors can report a race on
the two accesses (suppose there is a write in free(p) to p).

Lastly, concurrency vulnerabilities particularly refer to those
causing memory corruptions due and can be exploited to launch
severe attacks [52]. However, only about 8% to 10% races are harmful
[18, 38]. That is, a larger number of races are actually benign and
even some races are deliberately introduced [45]. If we rely on race
detectors, we have to pay additional effort to identify harmful ones.

Other kinds of major concurrency bugs like atomicity violations
and order violations may also cause concurrency vulnerabilities
[56]. Given an atomic region or an order between two events, it
will be easy to further identify any violations to them. However,
the challenge is, how to identify atomic regions or expected orders
of two events [30, 36, 40].

Another direction to detect concurrency vulnerabilities is based
on scheduling prediction. The representative one is based on the
Maximal Casual Model [47]. There have been works to predict con-
currency NPDs [19], and concurrency UAFs [23]. ExceptioNull
relaxes this model to detect concurrency NPDs which can miss vul-
nerabilities [19]. Another limitation of this model is that, it relies
on constraint solver to determine the feasibility of each potential
scheduling. This introduces performance challenges as it is usually
time consuming to solve a large set of constraints. Hence, in prac-
tice, these tools have to relax their model based on heuristics. This
not only affects their precision but also makes them to miss real vul-
nerabilities. For example, to improve performance of the constraint
solver Z3, UFO adopts a sub-optimal model which can miss UAFs
(i.e., "does not encode all possible UAFs", see the two paragraphs right
above Section 4.3 in [23]) as also verified in our experiments.

3 BACKGROUND AND DEFINITIONS

3.1 Background

This paper focuses on multithreaded programs and is based on se-
quential consistency memory model [28]. A multithreaded program
consists of a set of threads that execute a set of events concurrently

and coordinate their paces via synchronizations on locks (other
synchronization primitives can be defined similarly). Particularly,
we focus on the following types of events: (1) Memory read and
write: read(t , m) and write(t , m), a thread t reads from or writes to
a memory blockm and (2) Lock acquisition and release: acq(t , l)
and rel(t , l), a thread t acquires or releases a lock l .

For simplicity, we may omit the thread identifiers in above events
(e.g., to use read(m) instead of read(t ,m)). We also use Tid(e) to
extract the thread identifier that executes event e .

An execution traceσ is a sequence of all events;σti is a projection
of σ on thread ti (i.e., all events from thread ti).

The happens-before relation (HBR for short, denoted as→)
[27] is defined as three rules:

(1) Program order: given two events α and β from the same
thread, if the event α is executed before β , then α → β .

(2) Synchronization order: if a lock l is released by a thread,
denoted as rel(l), and is later acquired by another thread,
denoted as acq(l), then rel(l) → acq(l).

(3) Transition property: if α → β and β → γ , then α → γ .

HBR can be tracked via vector clocks [20, 27]. A vector clockVC
of size n is an array of n integers. The corresponding algorithms are
well-known [3, 7, 20, 32] and we will not discuss them in details.
The basic idea is to set three kinds of basic vector clocks VCt , VCl ,
and VCm for each thread t , for each lock l , and for each memory
blockm, respectively. They are maintained on various events and
checked to determine the happens-before orders of two events.

3.2 Exchangeable Events

The execution of multithreaded program exhibits non-determinism.
Given two events, their execution orders may be different in differ-
ent executions. However, there are still many events where their
execution orders are fixed among all executions. We are more inter-
ested in the former. If their execution orders can be different from
the observed orders, they may cause a concurrent vulnerability. To
describe such pairs of events, we define exchangeable events.

Definition 1. Given two events e1 and e2, among all executions,

if both e1 → e2 and e2 → e1 are observed, we say that e1 and e2 are
a pair of exchangeable events.

The orders of two exchangeable events must be reversible as
both orders are already observed. And we call such two events as
strict exchangeable events. However, it is extremely difficult to
observe all two orders in limited executions.

We then propose a concept of relaxed exchangeable event. Before
that, we firstly present two concepts to describe such kinds of events.
A sync-edge (⇒) is an edge either (1) from an event acq(m) to its
paired event rel(m) in the same thread or (2) from an event rel(m)
to a later event acq(m) by two different threads. Based on sync-edge,
we define the sync-distance (or distance for short) of two event
e1 and e2 as the minimal number of sync-edges that order the two
events, denoted as D(e1, e2).

Figure 2 shows three threads and their synchronizations that
totally execute 11 non-synchronization events, where each gray
block indicates a pair of acquisition and release on the same lock.
On the right of Figure 2, we also list the distances of all pairs of

708

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang

Thread t1

Thread t2

e2

e4

e8

e10

e6

e1

e3

e5

e9

e7

e11

Thread t3
D(e1, e2) = 1.
D(e1, e3) = 1.
D(e1, e4) = 3.
D(e1, e5) = 3.
D(e1, e6) = 4.
D(e1, e7) = 4.
D(e1, e8) = 5.
D(e1, e9) = 5.
D(e1, e10) = 6.
D(e1, e11) = 6.

Sync. blocks:
acq(…)
…
rel(…)

D(e2, e3) = 1.
D(e2, e4) = 3.
D(e2, e5) = 3.
D(e2, e6) = 4.
D(e2, e7) = 4.
D(e2, e8) = 5.
D(e2, e9) = 5.
D(e2, e10) = 6.
D(e2, e11) = 6.

D(e3, e4) = 0.
D(e3, e5) = 0.
D(e3, e6) = 0.
D(e3, e7) = 0.
D(e3, e8) = 0.
D(e3, e9) = 0.
D(e3, e10) = 0.
D(e3, e11) = 0.

Source event

e1 e2 e3

Figure 2: A demonstration on sync-distances.

acq(m)

free(p)

rel(m)

Thread t1 Thread t2

p->field = …

acq(m)

rel(m) acq(m)

rel(m)

free(p)

Thread t1 Thread t2

acq(m)

p->field = …

rel(m) acq(m)

rel(m)

free(p)

Thread t1 Thread t2

p->field = …

acq(m)

rel(m)

(a) (b) (c)
Figure 3: Three variants of the example in Figure 1.

events from e1, e2, and e3. For example, there are totally 4 sync-
edges that order e2 and e6; hence, we have Dist(e2, e6) = 4 (where
the edges are along the path e2, e4, e5, e6 which is short than the
path e2, e4, e8, e9, e10, e6). And we have D(e3, e4) = 0 as there is no
sync-edge ordering them.

Obviously, the minimal distance of two events is zero, indicating
that no sync-edge ordering the two events; and they are expected
to execute in parallel (if they are from two threads). In all other
cases, there is at least one sync-edge ordering them. Hence, one
of them actually happens-before the other. That is, the minimal
non-zero distance of two events (from two threads) is 3. 2 This case
is shown in Figure 1, which further has three variants as shown in
Figure 3 (where, in each of the three, thread t1 executes first and
the distance of two accesses in bold is 3 3). We are interested in
these cases where the distance is larger than zero. In such cases, the
order of the two events may still be reversed as shown in Figures 1
and 3.

Intuitively, given two ordered events, if their distance is smaller,
there will be a higher probability to reverse the execution order
of the two events. Besides, if there is a third event such that the
both distances from two events to it are smaller, then there will be a
higher probability to reverse the execution order of the two events.
Based on these two heuristics, we propose d-relaxed exchangeable
events that is predictable from a single execution, as illustrated in
Figure 4.

Definition 2. Given an execution trace σ and its projections on

two different threads t1 and t2 as σt1 = ⟨..., e1, ...⟩ and σt2 = ⟨...,
eany , ..., e2, ...⟩, respectively, let d = D(e1, e2), if either (1) d = 0 or
(2) d ≥ 1 ∧ D(eany , e2) ≤ 1 ∧ D(eany , e1) = 0 holds, then two events

e1 and e2 are d-relaxed exchangeable events, denoted as e1 ↔d e2.

For example, in Figure 1, there is a pair of 3-relaxed exchangeable
events, where e1 = p->test(), e2 = free(p), and eany is any event right
2Note, for two events from the same thread, their minimal distance can be 1 and no
two events have a distance of 2.
3Unlike the example in Figure 1, for all cases in Figure 3, a race detector can report a
race on two accesses if the lock acquisition order onm by two threads can be reversed.

e1

e2

Thread t2Thread t1

eany

D(e1, e2) = d.

D(eany, e2) ≤ 1.

D(e1, eany) = 0.

Figure 4: Illustration on d-relaxed exchangeable events.

before acq(m) of thread t2 (not shown). Generally, for a consecutive
lock acquisition and release by two threads, if the HBR between two
events are only determined by the two acquisitions, then the two
events are d-relaxed exchangeable events for some value of d . In
the rest of this paper, without explicit explanation, all exchangeable
events refer to d-relaxed exchangeable events.

Admittedly, like HBR, our above definition is not 100% precise.
A precise approach to determine whether the order of two ordered
events observed in one execution requires analyzing all memory
read and write accesses of all threads between the two events [33,
50]. This might be (partially) feasible in theory but ineffective in
practice, especially on large-scale programs [26]. Besides, in most
cases, any memory read or write in between two events does not
affect the order of them; hence, such algorithms will further limit
the interleaving coverage on inferring exchangeable events, i.e.,
reporting false negatives. Hence, our definition by considering
synchronizations plus an "evidence" (i.e., eany) is more practical
and provides larger coverage.

Intuitively, with increasing value of d , the probability to reverse
the order of a pair of d-exchangeable events may decrease due to
other constraints besides synchronizations. Hence, in this paper,
we restrict the value of d to be 3, i.e., the minimal non-zero distance
for two events from two threads. It is also the default value when
the distance of two exchangeable events is not mentioned in this
paper. In experiment, we show a result under additional difference
distances.

4 OUR APPROACH: CONVUL

4.1 Overview

ConVul dynamically analyzes executions and identifies sets of
critical operations related to memory operations. If they can form
any of three kinds of concurrency vulnerabilities by exchanging
their orders, they are reported as potential vulnerabilities. Next,
ConVul tries to isolate real ones by scheduling executions to trigger
their occurrence.

In the rest of this section, we firstly present a basic tracking
algorithm for exchangeable events in Subsection 4.2. Then, we
analyze how three kinds of concurrency vulnerabilities can occur
in multithreaded executions as well as how to detect them by our
ConVul.

4.2 Check Exchangeable Events

ConVul detects concurrency vulnerabilities according to a given
distance value of d (i.e., consider d-relaxed exchangeable events).
The naïve way to calculate the distanced is straight-forward. It only
requires tracking all events and all synchronizations as a graph,
where memory access events and lock acquisitions are nodes and

709

Detecting Concurrency Memory Corruption Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 1 Check Exchangeable Events
1: PredVCe maps an event e to a predicted vector clock that should be

formed when thread T id (e) releases a lock l .
2: function onAnyEvent(Event e)
3: PredVCe ← VCt , where t = T id (e).
4: end function

5: function AreExchangeable(e1, e2)
6: if ¬(e1 → e2 ∨ e2 → e1) then ▷ i.e., D(e1, e2) = 0
7: Return T rue
8: end if

9: Let σ be the current execution trace.
10: Let t1, t2 be the thread IDs of e1 and e2, respectively.
11: Let er el = r el (l) be the first release on l after e1 in σt1 , and

eacq = acq(l) be the last acquisition on l before e2 in σt2 .
12: Let eany be the event right before eacq in σt2 .
13: ▷ i.e., limit D(eany, e2) ≤ 1
14: if ¬(eany → e1 ∨ e1 → eany) and VCl = PredVCe1 then
15: ▷ i.e., D(eany, e1) = 0 and D(e1, e2) ≤ 3
16: Return T rue
17: end if

18: Return False
19: end function

lock acquisition orders (including both thread-local ones and across-
threads ones) are edges. The distance of two events will the be the
number of edges on a shortest path from one event to another
on the graph. However, this implementation consumes too much
memory. In this paper, we design a different one for checking 3-
relaxed exchangeable events, by utilizing HBR tracking based on
vector clocks, shown in Algorithm 1.

Given two events e1 and e2, Algorithm 1 firstly checks whether
they are ordered by HBR; if not, they are exchangeable events.
Otherwise, it further extracts three required events er el and eany
as well as eacq (lines 11–12) and checks whether they satisfy the
conditions in Definition 2 (lines 13–14).

Note that, in Algorithm 1, given line 12, the checking on the
conditions in line 14 is an effective implementation of the conditions
in Definition 2. Let’s explain it below.

If the two events are ordered, there must be a lock release event
er el ; and a meaningful eany must be in a different synchroniza-
tion block from event e2 (otherwise, the condition D(eany , e1) = 0
will not be satisfied). Hence, there will be at least one lock acqui-
sition event eacq . Besides, as we already limit the value of d in
d-exchangeable event to be 3, there will be at most one sync-edge
between two threads (e.g., see Figures 1 and 3).

As a result, there must be the same lock l , such that its release
and acquisition are the above said lock release after e1 and the lock
acquisition eacq in between eany and e2. This also indicates that
the vector clock of the lock l (right after er el and right before eacq)
keeps unchanged. Hence, to reduce tracking effort, Algorithm 1
introduces a new vector clock PredVCe for each event e to keep a
predicted vector clock of a lock l being held by Tid(e) when this
thread releases lock l (line 1). It is maintained when event e occurs
(line 3). If there is no such a lock l , it becomes empty. Thus, the
checking VCl = PredVCe1 determines whether lock l is the one
in above events er el and eacq , which further determines whether
D(e1, e2) is 3 (line 14).

(a)

free(p)

Thread t1 Thread t2

p->test();

//p->field = …;

(b)

free(p)

Thread t1 Thread t2

p->test();

//p->field = …;

Figure 5: How a concurrency UAF occurs.

Algorithm 2 Detect Concurrency UAF
1: function onMemAccess(m, t)
2: Let em be this event.
3: VCem [t] ← VCt [t] ▷ Track status of each event
4: end function

5: function onFree(p, t) ▷ p : a pointer to a memory block.
6: Let ef p be this event.
7: sz ← DerefSize(p)
8: for i from 0 to sz − 1 do
9: m′ ← Deref (p + i)
10: if ∃ em′ , such that (em′ ↔ ef p) then
11: Report a UAF.
12: end if

13: end for

14: end function

4.3 Analyze and Detect Concurrency UAFs

A UAF vulnerability occurs when a freed memory block is re-
accessed [9]. It is known that more than 88% UAFs can be exploited
to launch zero-day attacks [29]. A UAF vulnerability is caused by
at least two memory accesses: (1) free a memory block pointed to
by a pointer p and (2) later access the memory block via the pointer
p. Therefore, it is possible that the two accesses can be performed
by two threads.

Figure 5 shows an example of how a concurrency UAF can occur.
There are two statements: p->test() and free(p) where p is a pointer.
In correct executions (shown in Figure 5(a)), thread t1 first deref-
erences pointer p and then, thread t2 frees the memory block via
pointer p. However, if the memory location is freed by thread t2
first before its use in thread t1, a UAF occurs, as shown in Figure
5(b).

The challenge is that, given the execution order in Figure 5(a),
how we can know the existence of the order in Figure 5(b). This
is essentially the difficulty in analyzing multithreaded programs.
For example, there might exist the same locks protecting the two
accesses in a concurrency UAF; and hence, no race detector can
report a race on it. For other cases, race detector may also be inef-
fective, as discussed in Section 2. Of course, if these accesses are all
protected by the same locks, no race detector can detect the UAF.

Our algorithm. Considering the semantics of UAFs and the
multithreaded executions, we propose Algorithm 2 to detect pos-
sible concurrency UAFs. Given a correct execution trace, it tracks
all memory accesses (lines 1–4) and updates corresponding vector
clocks (line 3). Later, if there is any free call on p (denoted as event
ef p), Algorithm 2 checks whether there is any event accessing
memory blocks pointed by p (denoted as event em′ , lines 9–10). The
function DerefSize(p) returns the size of the memory block pointed
by p. For any such event em′ , if em′ and ef p are exchangeable events,
Algorithm 2 reports a potential concurrency UAF (lines 10–11).

710

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang

p->test()

p = NULL

Thread t1 Thread t2

p->test()

p = NULL

Thread t1 Thread t2

(a) (b)

p->test()

p = NULL

Thread t1 Thread t2

Thread t3

p = q p = qp = q

p->test()
p = NULL

Thread t1 Thread t2 Thread t3

p = q

p = qp = q

Figure 6: How a concurrency NPD occurs.

Algorithm 2 overcomes limitations of race detectors by checking
whether two events are exchangeable events, no matter they are
well ordered by HBR or not.

4.4 Analyze and Detect Concurrency NPDs

When a pointer is set to be NULL and is dereferenced later, a NULL
pointer dereference (NPD) occurs. It can be usually exploited to
launch various attacks [4, 5]. A NPD involves a memory write to a
pointer with a NULL value and a later dereference (e.g., p->test()).
The two events in a NPD can be produced by two different threads
as shown in Figure 6(a), where a thread t1 dereferences a pointer p
and a second thread t2 later sets the pointer to be NULL. However,
if the order of two events can be reversed so that thread t2 firstly
writes the pointer to be NULL and then thread t1 tries to dereference
this pointer, causing a concurrency NPD. To ease our presentation,
we use circled number to denote each statement/event.

In practice, however, it is not straightforward to analyze a concur-
rency NPD. This is because there are often other events in between
the two events 1 and 2 . We have systematically analyzed all
possible cases and identify three unique ones. Besides the simple
case shown in Figure 6(a), another three cases are shown in Figure
6(b) where one more event (i.e., 3 , 4 , or 5) writing the pointer
(i.e., p = q) exists in between the two events 1 and 2 . And the
pointer writing event p = q can be executed by either of two threads
or a third thread (i.e., forming an event 3 , 4 , or 5 , respectively)
as long as it is executed in between the two events.

In these cases, if the pointer writing event p = q occurs before
the NULL-writing event by thread t2 (as 4) or after the pointer
dereference by thread t1 (as 3 or 5), a concurrency NPD occurs.
On detecting concurrency NPDs, race detectors can precisely report
a race on 1 and 2 in Figure 6(a). However, for three cases in
Figure 6(b), although they can report races, these races cannot be
directly related to concurrency NPDs.

Our algorithm. Our algorithm (Algorithm 3) tracks all recent
NULL value writes to all pointers (i.e., OnMemWrite(p, val, t)) as
well as all pointer dereferences (i.e., onMemRead(p, ins, t), where ins
is the instruction containing the read event to pointer p). In order
to detect all four types of concurrency NPDs in Figure 6, Algorithm
3 maintains three additional data structures: VCWNul

p , VCWnNul
p ,

andVCR
p , to track NULL value writes, Non-NULL values write, and

reads (i.e., dereferences) to a pointer p, respectively.
During runtime, for each memory write, Algorithm 3 checks the

value to write to pointer p (line 5). If the value is NULL and there
was a read event to the same pointer p, it will report a concurrency
NPD if this read event and the current write event p (lines 7–8) are

Algorithm 3 Detect Concurrency NPD

1: VCWNul
p : Track NULL value writes to pointer p.

2: VCWnNul
p : Track Non-NULL value writes to pointer p.

3: VCR
p : Track reads to pointer p.

4: function onMemWrite(p, val, t)
5: if val = NU LL then

6: Let eWNul
p be this event.

7: if ∃ eRp such that eWNul
p ↔ eRp then

8: Report a NPD. ▷ Case (a)
9: end if

10: VCWNul
p [t] ← VCt [t] ▷ Null-value writes

11: else

12: VCWn
p [t] ← VCt [t] ▷ Non-null-value writes

13: end if

14: end function

15: function onMenRead(p, ins, t)
16: Let eRp be this event.
17: if isDeref(ins) , T rue then

18: Return
19: end if

20: if ∃ eWNul
p ∧ eWnNul

p then

21: if eWNul
p ↔ eWnNul

p then

22: Report a NPD. ▷ Case (b): 2 | | 3 / 4 / 5
23: else if eRp ↔ eWnNul

p then

24: Report a NPD. ▷ Case (b): 3 / 4 / 5 | | 1
25: end if

26: end if

27: VCR
p [t] ← VCt [t]

28: end function

29: function IsDeref(ins)
30: Let ins′ ← Next Ins(ins)
31: if hasR(ins) ∧ hasRW (ins′) ∧ BaseReд(ins′) =

OprandReд(ins) then
32: Return T rue
33: end if

34: Return False
35: end function

exchangeable events. This type of concurrency NPD corresponds
to the one shown in Figure 6(a). Next, Algorithm 3 tracks this
write event by updating VCWNul

p (line 10) or VCWnNul
p (line 12),

according to whether the value to write to pointer p is NULL.
For the concurrency NPDs shown in Figure 6(b), Algorithm 3

detects them when a pointer is read (in onMemRead(p, ins, t)). For
a memory read event eRp to a pointer p, if there are two events
(eWNul
p and eWnNul

p which are, respectively, expected to be 2 and
one of 3 , 4 , and 5 in Figure 6(b)) that write a NULL value and
a Non-NULL value to p, Algorithm 3 further checks the following
conditions to detect concurrency NPDs:

• If the two events eWNul
p and eWnNul

p are exchangeable events,
a concurrency NPD is reported (lines 21–22). Here, the two
events are 2 and 4 or 2 and 5 .
• If the two events eRp and eWnNul

p are exchangeable events, a
concurrency NPD is also reported (lines 23–24). Here, the
two events are 1 and 3 or 1 and 5 .

711

Detecting Concurrency Memory Corruption Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

free(p)

free(p)

Thread t1 Thread t2 Thread t3

p= … p= … p= …

free(p)

free(p)

Thread t1 Thread t2 Thread t3

p= …

p= … p= …

(a)

(b)

Figure 7: How a concurrency DF occurs.

In Algorithm 3, we check whether a memory read is a pointer
dereference in IsDeref(ins). It is based on the following heuristic: a
pointer dereference usually corresponds to two consecutive binary
instructions ins and its next instruction ins ′ (line 31), where the
Operand Register of the first memory read operations ins is used
as the Base Register of its next memory access instruction ins ′. Of
course, this heuristic might be imprecise and can be improved.

4.5 Analyze and Detect Concurrency DFs

A double free (DF) vulnerability occurs when a memory location
is freed twice [9]. DF is also a kind of serious vulnerability and
can be exploited to launch remote code execution attacks [17]. A
DF involves two events and can occur in multithreaded programs.
Unlike UAF and NPD, a DF involves the same type of two memory
free events. Hence, once two free events on the same memory
location occur, a DF must occur.

In practice, a concurrency DF may be hidden by other pointer
assignments in between two free events. Hence, the two frees via
the same pointer actually free two different memory blocks. The
assignment can be either from one of the two threads or a third
thread. We show an example in Figure 7(a). In the example, two
threads t1 and t2 execute two frees on the same pointer p. And in
between two free(p) calls, a write to p exists from either thread t1
(Case 1)), or thread t2 (Case 2)), or thread t3 (Case 3)). As a result,
although the pointer p is freed twice, no DF occurs.

However, given a different thread schedule as shown in Figure
7(b), if the assignment to pointer p occurs after both free(p) (as Case
1)) or before both free(p) (as Cases 2) and 3)), a concurrency DF
occurs.

Given the concurrency DF in Figure 7, a race detector may report
a race between the read to p in free(p) and the write to p. This,
however, is insufficient to infer a DF. Similarly, when it involves
lock protection, no race detector can detect the DF.

Our algorithm. Algorithm 4 assumes, if there is any potential
concurrency DF, there must exist three events: two free events on
the same pointer by two different threads and one assignment to
the same pointer (as shown in Figure 7).

Algorithm 4 maintains two data structures: a map Pts that maps
a memorym to a set of pointers to memory blockm, and a map
Frs that maps a pointer p to a set of free events on p. The structure
Pts is maintained by fully tracking any assignment from a memory
blockm to a pointer p (in onPointerAssign(p, m)). That is, when
an address of a memorym is assigned to a pointer p, all mapped
items to p from other memory m′ are removed (line 5) and p is
remapped from memorym (line 7).

Algorithm 4 Detect Concurrency DF
1: Pts : a map from a memorym to a set of pointers tom.
2: Frs : a map from a pointer to an event that frees p .
3: function onPointerAssign(p,m)
4: for ∀m′ such that Pts(m′) , ∅ do
5: Pts(m′) ← Pts(m′) \ {p }
6: end for

7: Pts(m) ← Pts(m) ∪ {p }
8: end function

9: function onFree(m, t) ▷m: the 1st addr of a memory block.
10: Let ef be this event.
11: for each p ∈ Pts(m) do
12: Let eWp be the event associating pointer p tom.
13: if ∃ eFp ∈ Frs(p) then
14: if eFp ↔ eWp then

15: Report a DF. ▷ Case (a)
16: else if eWp ↔ ef then

17: Report a DF. ▷ Case (b)
18: end if

19: end if

20: Frs(p) ← Frs(p) ∪ {ef }
21: end for

22: end function

The core part of Algorithm 4 is how it checks free events and
detects concurrencyDFs, as shown in function onFree(m, t). Given a
free event free(p) that actually frees memorym by thread t (denoted
as event ef), it tries to find a previous assignment event to pointer
p from a memorym (denoted as event eWp), such that there is also
a previous free event on the same pointer p (denoted as eFp) (lines
11–13). Then, a concurrency DF is reported in one of two cases:
• Case (a): The two events eFp and eWp are exchangeable events
(line 14), i.e., the case where thread t2 has an assignment to
p in Figure 7.
• Case (b): The two events eWp and ef are exchangeable events
(line 16), i.e., the cases where thread t1 or t3 has an assign-
ment to p in Figure 7.

4.6 Schedule Executions

HBR is not guaranteed to be 100% precise [20, 33]. Similarly, our
relaxed exchangeable events are also not 100% precise. To overcome
this imprecision we adopt scheduling techniques with aim to trigger
occurrences of all reported concurrency vulnerabilities.

Given a set of ordered events from a trace, we try to produce a set
of new orders (our target) among these events. The basic idea is to
suspend the first event in each order to enforce the targeted order to

Table 1: Scheduling rules ((((((((
Cancelled events are not required to ap-

pear).

Detected Orders Targeted Orders

UAF ⟨euse , ef r ee ⟩ ⟨ef r ee , euse ⟩

NPD
⟨ederef , ewNull ⟩ ⟨ewNull , ederef ⟩

⟨ewNull , er eAssiдn, ederef ⟩
⟨er eAssiдn, ewNull ,���ederef ⟩
⟨ewNull , ederef ,((((er eAssiдn ⟩

DF ⟨ef r ee1, er eAssiдn, ef r ee2 ⟩
⟨ef r ee1, ef r ee2,((((er eAssiдn ⟩
⟨er eAssiдn, ef r ee1,���ef r ee2 ⟩

712

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang

occur. Table 1 shows both the events and the orders of each reported
concurrency vulnerability by ConVul as well as the targeted orders
among these events. There are totally six rules. In the last four rules,
if the targeted order of the first two events is satisfied, then the third
event may not appear (i.e., become meaningless as the vulnerability
already occurs).

ConVul adopts the existing scheduling work [11, 12] to validate
each reported vulnerability by including support of memory access
events. As novelty of ConVul is at its predictive detection of con-
currency vulnerabilities, we omit the detailed scheduling algorithm.
Readers may refer to the work [11, 12].

5 DISCUSSION

ConVul is a two-phase approach to detect three kinds of con-
currency vulnerabilities in real-world programs. It does not adopt
heavy strategies (e.g., via maximal casual models) to find all vulnera-
bilities but relies on a practical prediction and a practical validation.
Hence, it can miss vulnerabilities. However, its validation guaran-
tees that no false positive is reported. In future, we will extend
ConVul to detect more concurrency vulnerabilities.

6 EXPERIMENTS

6.1 Experiment Setup

6.1.1 Implementation. We implemented ConVul on top of Pin
[31] for C\C++ programs with Pthread. ConVul instruments both
synchronizations and memory accesses during program loading
time to produce various events. During runtime, these events are
passed to the algorithms of ConVul.

For comparison purpose, we also selected three representative
race detectors: FastTrack (FT) [20], Helgrind (Hel) [3, 39], and
Thread Sanitizer (TSan) [49], as well as a recent work UFO [23]. FT
and Hel are two well-known Happens-before based race detector
[27] and such detectors usually report fewer false positives but
miss real races. TSan is a practical hybrid race detector based on
both Happens-before relation and Lockset discipline [45], which is
claimed to report the largest number of races without reporting false
positives and benign races [49]. Both Hel and TSan are available
online; for FT, we adopted the implementation from a recent work
[22]. UFO targets on detecting concurrency UAF and is available
online. ExceptioNull [19] detects NPDs based on the similar idea
as UFO; unfortunately, it is for Java and is not available. Besides
above tools, we adapted UFO on known vulnerabilities to detect
concurrency NPDs, denoted as UFOnpd (see the next subsection) .

We did not compare ConVul with detectors like Address Sani-
tizer [48] as which only detects occurred vulnerabilities but cannot
predict ones from correct executions.

6.1.2 Benchmarks. We aim to evaluate the ability of ConVul at
detecting not only known but also zero-day concurrency vulner-
abilities, including on real-world large-scale programs. We then
searched the NVD vulnerability database (i.e., at the site https:
//nvd.nist.gov). We restricted all CVEs under category of "Race"
published in the past ten years (from 2008 to 2017). This results
in 545 records. We then manually identified those caused by UAF,
NPD, and DF, which resulted in 82 CVEs. Next, we excluded those
on non-Linux platform (i.e., on "Android", "Apple", "Java", "Windows

kernel", and "Qualcomm") and those with no clear descriptions or
without source and inputs (like POC). Finally, there are 10 CVEs left.
We extracted the code involving vulnerabilities. We also replaced
non-Pthread synchronizations with Pthread ones. Table 2 shows the
details of these CVEs, including their CVE IDs, Category, Program,
and Detection Results by all detectors. We further selected MySQL
database server (of the latest version 5.7.20 at the time of evalu-
ation). MySQL is a widely-used large-scale programs consisting
of 2, 244, 927 SLOC. It mainly adopts Pthread model with several
customized synchronizations and contains 933 test cases.

Note, as UFO only detects UAFs, we revised the 5 known NPD
vulnerabilities by changing the NULL pointer assignment as frees
(i.e., change "p=NULL;" to "free(p);"). Thus, UFO (as UFOnpd) are
expected to detect the 5 NPDs as 5 UAFs. However, on MySQL, we
are unable to do such changes for its whole code; and it also crashed
after we applied above changes to all NPDs detected by ConVul.
Hence, UFOnpd was only "evaluated" on the 5 known NPDs.

6.1.3 Setting. The default distance of ConVul is 3 (i.e., to check
3-relaxed exchangeable events). We also configured it with other
distances and present the results in Section 6.4. For other tools, we
adopted their default configurations.

Our experiment was conducted on a ThinkPadworkstationW541
with an i7-4710MQ processor, installed with Ubuntu 14.04, GCC 4.8,
LLVM 3.6. We run all tools for 10 times and collected their results
(but 100 times for collecting time and memory overhead).

6.2 Effectiveness on Known Vulnerabilities

Table 2 shows the results of the all detectors on 10 concurrency
vulnerabilities. Note that, the three detectors only detect races;
hence, we count a reported race as a "vulnerability" if it reflects a
concurrency vulnerability; otherwise, we further check whether
they report any race on the variable of a concurrency vulnerability;
if so, we append a star marker (⋆) in the corresponding cell in Table
2. UFO only detects UAFs and UFOnpd only detects NPDs; we put a
"-" to indicate the case where they are not applicable.

From the table, ConVul successfully detected 9 out of 10 vul-
nerabilities. However, others only detected 1 to 2 vulnerabilities.
In other words, all three race detectors missed at least 80% known
vulnerabilities. These results are consistent with our claim that, not
all concurrency vulnerabilities can be detected by race detectors.
Even simply counting any race on variables involved in vulnera-
bilities (indicated by ⋆), three detectors still missed 4 to 6 (about
50%) vulnerabilities. UFO only detected 1 out of 4 known UAFs; and
UFOnpd only detected 2 out of 5 NPDs. Obviously, on 10 unknown
CVEs, ConVul was significantly effective than others.

AsConVul onlymissed one vulnerability (whichwas alsomissed
by all other detectors), we investigated it and outline its code below:

1 // Initialization
2 head ->mm=NULL;
3 head ->next=node;
4
5 Thread texit
6 acq(mmlist);
7 head ->next = head;
8 rel(mmlist);

9 Thread tworker
10 tmp =...;
11 if(head ->next != head){
12
13 acq(mmlist);
14 tmp = head ->next;
15 rel(mmlist);}
16 tmp ->mm ->... // dereference

713

https://nvd.nist.gov
https://nvd.nist.gov

Detecting Concurrency Memory Corruption Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: Descriptive statistics and detection results.

CVE ID Category Program
Detection Results

ConVul FT Hel TSan UFO UFOnpd
cve-2009-3547 NPD Linux-2.6.32-rc6 ✓ ✓ ✓ ✓ - ✓
cve-2011-2183 NPD Linux-2.6.39-3 ✗ ✗ ✗ ✗ - ✗
cve-2013-1792 NPD Linux-3.8.3 ✓ ✗ ✗ ✗ - ✗
cve-2015-7550 NPD Linux-4.3.4 ✓ ✗ ✗ ✗ - ✓
cve-2016-1972 UAF Firefox-45.0 ✓ ✗ ✗ (⋆) ✗ (⋆) ✗ -
cve-2016-1973 UAF Firefox-45.0 ✓ ✗ ✗ ✗ ✗ -
cve-2016-7911 NPD Linux-4.6.6 ✓ ✗ (⋆) ✗ (⋆) ✗ (⋆) - ✗
cve-2016-9806 DF Linux-4.6.3 ✓ ✗ (⋆) ✗ ✗ (⋆) - -
cve-2017-6346 UAF (DF) Linux-4.9.13 ✓ ✗ (⋆) ✗ (⋆) ✗ (⋆) ✗ -
cve-2017-15265 UAF Linux-4.13.8 ✓ ✗ ✗ ✓ ✓ -

Total 9 1 1 2 1 2

Table 3: Six zero-day concurrency vulnerabilities detected by

ConVul on MySQL and a comparison with other detectors.

Bug ID Category Status
Detected by Others?

FT Hel TSan UFO
MySQL-88311 UAF Confirmed ✗ ✗ ✗ ✗
MySQL-88911 NPD Submitted ✗ ✗ ✗ ✗
MySQL-88914 NPD Submitted ✗ ✗ ✗ ✗
MySQL-91448 NPD Confirmed ✗ ✓ ✓ ✗
MySQL-91449 NPD Confirmed ✗ ✗ ✗ ✗
MySQL-91896 NPD Confirmed ✗ ✗ ✗ ✗

Total: 0 1 1 0

From the code, we see that, a NPDwill occur if thread texit (lines
6, 7, and 8) executes in between line 11 and line 13 of thread tworker .
This NPD is caused by a NULL value write to pointer mm at line 2
and a dereference on the same pointer mm at line 16. In a normal
execution, thread tworker executes first followed by thread texit .
This case falls out of our models shown in Figure 6 and ConVul
failed to detect it. For three race detectors, as a lock mmlist is used
to order two writes to head->next, no race was reported by them.

6.3 Effectiveness on Unknown Vulnerabilities

6.3.1 Summary of Results. Table 4 shows the number of concur-
rency vulnerabilities or races reported on MySQL by all tools. Con-
Vul predicted 9 concurrency vulnerabilities and 6 of them was
triggered. FT reported up to 2,208 races. Both Hel and TSan re-
ported almost the same number of races: 536 and 546, respectively.
Surprisingly, UFO detected no UAF.

6.3.2 Result Analysis. From Table 4, we see that the three race
detectors reported many races (from hundreds to thousands). It
is unknown whether all these reported races are real ones and
how many of them reveal concurrency vulnerabilities. However,
ConVul reported 9 concurrency vulnerabilities and 6 of them were
zero-day vulnerabilities. We have reported these 6 vulnerabilities
to MySQL developers. And 4 of them have been confirmed as real
vulnerabilities; the remaining 2 are waiting for confirmation. We
first discuss the 6 zero-day vulnerabilities and then discuss the three
not triggered ones (in the next subsection).

Table 4: # of concurrency vul. or races reported on MySQL.

ConVul FT Hel TSan UFO

#Vul. or #Races 9/6 2,208 * 536 546 0
* Due to limited debug information by Pin, this result contains duplicated races.

Table 3 shows all 6 zero-day concurrency vulnerabilities, consist-
ing of 1 UAF and 5 NPDs. The table includes (1) Bug IDs allocated
by MySQL Bugzilla after we submitted our result, (2) vulnerability
category, and (3) vulnerability status. In the last major column, we
indicate whether FT, Hel, TSan, and UFO detected the 6 vulnera-
bilities or not.

From the last major column, we see that, FT and UFO detected
none of the 6 vulnerabilities; Hel and TSan both detected only one
of them. This further confirms that race detectors are ineffective
in detecting concurrency vulnerabilities and UFO can miss UAFs.
Compared to them, our tool ConVul is more effective.

6.3.3 Study on False Positives from Prediction. For the three false
positives, we have investigated them and found that all were caused
by the similar reason, as illustrated below.

1 Thread t1
2 //may be a lock here
3 for(each node in list){
4 node -> ...;
5 }

6 Thread t2
7 // sometimes a lock here
8 for(each node in list){
9 if(node = ...){
10 remove(list , node);
11 free(node);}}

In the simplified code, there is a list structure. In testing execu-
tions, thread t1 executes first to iterate each node in list. Hence,
the pointer node is firstly dereferenced (line 4) and then freed by
thread t2 (line 11). And ConVul predicted this as a concurrency
vulnerability. However, when thread t2 executes first, it will remove
the node from the list and then frees the memory pointed by node.
Next, when thread t1 executes, it will never read the node freed by
thread t2 again. As a result, the dereference is actually missing (as
the node is no longer in the list).

We further verified that, for three variables in three false posi-
tives, FT reported three races while both Hel and TSan reported
two races on two variables. Based on our above analysis, all these
reports are false positives. Actually, such false positives cannot be
easily excluded without scheduling runs, even for pure HBR based
race detectors. And this is still a hot topic [26, 33, 50].

6.4 ConVul with Different Distances

Besides 3-relaxed exchangeable events, we also set other different
distances (from 4 to 10) to ConVul and applied it to both 10 known
vulnerabilities and MySQL.

On the 10 known vulnerabilities, ConVul did not detect them
with d > 3. This is understandable as each of them only contains

714

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang

code producing vulnerabilities. On MySQL, with d = 4, one NPD
was detected; with d = 5, two NPDs were detected. They are a
subset of the 6 vulnerabilities listed in Table 3. In other cases (i.e.,
6 ≤ d ≤ 10), no vulnerability was detected.

6.5 Ineffectiveness Analysis of Other Detectors

The three widely used race detectors were significantly ineffective
in our experiment. After detailed investigation, we found that the
reasons were still those which we have discussed in Sections 1
and 2. UFO adopted a sub-optimal model and hence can generates
simple constraints that are accepted by high performance constraint
solvers like Z3, which prevents it to detect all UAFs (see the last
paragraph of Section 4.2 [23]). It only detected 1 UAF out of 5 known
and unknown UAFs.

6.6 Performance Evaluation

Table 5: Time overhead (an average of 100 runs).

Pin ConVul FT Hel UFO TSan

CVE Avg. 269.8x 330.9x 289.8x 235.8x 482.4x 7.0x
MySQL 3.4x 117.1x 17.87x 117.7x 7.0x 4.1x

Table 6: Memory overhead (an average of 100 runs).

Pin ConVul FT Hel UFO TSan

CVE Avg. 81.0x 151.8x 144.6x 525.2x 433.9x 1.7x
MySQL 2.2x 42.3x 19.6x 41.3x 121.4x 11.1x

Pin [31] and Valgrind [39] are two heavy dynamic binary instru-
mentation framework. ConVul and FT are built on Pin and Hel is
built on Valgrind. TSan is integrated into a program during compi-
lation time. UFO collects traces at runtime and offline detects UAFs.
To compare their performance, we collected both time overhead
and memory overhead of all. On 10 CVE programs, all detectors
incurred the similar time and memory overhead; we only show the
average data on them. The data is shown in Table 5 and Table 6,
including the overhead of Pin (with no tool) for reference.

From two tables, we see that, TSan incurred the least time over-
head and memory overhead, which is reasonable due to its inte-
gration implementation. And we will not discuss it. Other four
detectors incurred heavy time and memory overhead on 10 CVE
programs, where the time overhead of UFO and the memory over-
head of both Hel and UFO are extremely heavy (i.e., from >430x
to >520x). On MySQL, both ConVul and Hel incurred almost the
same time and memory overhead; however, UFO incurred the least
time overhead but the largest memory overhead.

Overall, compared to both FT, Hel, and UFO, the performance
of ConVul is acceptable to us.

7 RELATEDWORKS

Detection of concurrency vulnerabilities has begun to gain more
focus recently. The work [55] first shows important features of con-
currency attacks and reveals that many of concurrency bugs can
lead to severe attacks, such as privilege escalation, malicious code
execution and security check bypassing. 2AD [54] focuses on the
concurrent attacks on databases but cannot handle other programs

efficiently. OWL [59] detects concurrency attacks based on race
detectors and we have discussed it in this paper. It automatically
identifies the real concurrency bugs and eliminate false positive
produced by existing tools. And then, based on inter-procedural
analysis and attack input fuzzer, OWL can detect the attack sites
derived from shared memory corrupted by the concurrency bugs.
Compared with OWL, ConVul does not need to identify the con-
currency bugs, but directly focuses on concurrency vulnerabilities.

Among concurrency bugs, data race is the mostly closed one to
concurrency vulnerabilities, as explained in this paper. There have
been many works to detect them [10, 13, 20, 22, 25, 37, 41, 42, 45, 51,
53]. Razzer [24] focuses on fuzzing harmful races in Linux kernel.
One hot topic on race detection is to improve the detection coverage
in single executions [26, 33, 50] but not to explore all possible execu-
tions like Model checking [16]. Other topics are to focus on a small
portion of interleaving space [35, 57] and randomized scheduling
with guarantees [8]. These research directions can also benefit our
ConVul to detect additional concurrency vulnerabilities.

Lastly, fuzzing techniques become one of most effective meth-
ods to detect sequential vulnerabilities by simply mutating inputs,
including AFL [58] and Peach [6] which have found a huge num-
ber of notable security vulnerabilities in thousands of large-scale
programs on various systems. Symbolic execution and taint propa-
gation can be further used to improve code coverage and bypass
some special input validation checks in fuzzing [14, 21, 44]. Stress
testing can be an alternative one to increase thread parallelism [43].
ConVul can be integrated into these tools.

8 CONCLUSION

This paper studies how the order of two events can be reversed
in different executions. It further proposes ConVul implementing
three algorithms to detect concurrency vulnerabilities. The exper-
iment results on 10 known concurrency vulnerabilities and on a
database server demonstrated that ConVul is significantly more ef-
fective than existing works on detecting both known vulnerabilities
and 0-day vulnerabilities.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science
Foundation of China (NSFC) (Grant No. U1736209, U1836209, and
61602457), the Key Research Program of Frontier Sciences, Chi-
nese Academy of Sciences (Grant No. QYZDJ-SSW-JSC036), the
Youth Innovation Promotion Association of the Chinese Academy
of Sciences (YICAS) (Grant No. 2017151), the Young Elite Scientists
Sponsorship Program by CAST (Grant No. 2017QNRC001), and the
Blockchain Technology and Application Joint Laboratory, Guiyang
Academy of Information Technology (Institute of Software Chinese
Academy of Sciences Guiyang Branch).

REFERENCES

[1] Feb. 2019 (last accessed). Common Vulnerabilities and Exposures. https://cve.
mitre.org/.

[2] Feb. 2019 (last accessed). Dirty Cow (CVE-2016-5195) . https://dirtycow.ninja/.
[3] Feb. 2019 (last accessed). Helgrind: a thread error detector. http://valgrind.org/

docs/manual/hg-manual.html.
[4] Feb. 2019 (last accessed). Much ado about NULL: Exploiting a kernel NULL

dereference. https://blogs.oracle.com/linux/much-ado-about-null%3a-exploiting-
a-kernel-null-dereference-v2.

715

https://cve.mitre.org/
https://cve.mitre.org/
https://dirtycow.ninja/
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html

Detecting Concurrency Memory Corruption Vulnerabilities ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

[5] Feb. 2019 (last accessed). OpenSSL NULL Pointer Dereference Vulnerabilities.
http://www.securiteam.com/securitynews/5FP3B00HQE.html.

[6] Feb. 2019 (last accessed).. PeachTech. https://www.peach.tech.
[7] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER:

Proportional Detection of Data Races. In Proceedings of the 31st ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’10).
ACM, New York, NY, USA, 255–268. https://doi.org/10.1145/1806596.1806626

[8] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. 2010. A Randomized Scheduler with Probabilistic Guarantees of
Finding Bugs. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural

Support for Programming Languages and Operating Systems (ASPLOS XV). ACM,
New York, NY, USA, 167–178. https://doi.org/10.1145/1736020.1736040

[9] Juna Caballero, Custavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: Early Detection of Dangling Pointers in Use-After-Free and Double-Free
Vulnerabilities. In the ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA).
[10] Yan Cai and Lingwei Cao. 2015. Effective and Precise Dynamic Detection of

Hidden Races for Java Programs. In Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,
450–461. https://doi.org/10.1145/2786805.2786839

[11] Y. Cai and Q. Lu. 2016. Dynamic Testing for Deadlocks via Constraints. IEEE
Transactions on Software Engineering 42, 9 (Sep. 2016), 825–842. https://doi.org/
10.1109/TSE.2016.2537335

[12] Yan Cai, Shangru Wu, and W. K. Chan. 2014. ConLock: A Constraint-based
Approach to Dynamic Checking on Deadlocks in Multithreaded Programs. In
Proceedings of the 36th International Conference on Software Engineering (ICSE

2014). ACM, New York, NY, USA, 491–502. https://doi.org/10.1145/2568225.
2568312

[13] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A Deployable Sampling
Strategy for Data Race Detection. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 810–821. https://doi.org/10.1145/2950290.2950310

[14] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-vivo Multi-path Analysis of Software Systems. In Proceedings

of the 16th International Conference on Architectural Support for Programming

Languages and Operating Systems.
[15] Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Synchro-

nization Skeletons Using Branching-Time Temporal Logic. In Logic of Programs,

Workshop. Springer-Verlag, Berlin, Heidelberg, 52–71. http://dl.acm.org/citation.
cfm?id=648063.747438

[16] Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT
press.

[17] Matthew Conover. Feb. 2019 (last accessed). Double Free Vulnerabilities. https:
//www.symantec.com/connect/blogs/double-free-vulnerabilities-part-1.

[18] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.
2010. Effective Data-race Detection for the Kernel. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, Berkeley, CA, USA, 151–162. http://dl.acm.org/citation.
cfm?id=1924943.1924954

[19] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. 2012.
Predicting Null-pointer Dereferences in Concurrent Programs. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering (FSE ’12). ACM, New York, NY, USA, Article 47, 11 pages. https:
//doi.org/10.1145/2393596.2393651

[20] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’09). ACM, New York,
NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

[21] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Queue 10, 1 (January 2012).

[22] Yu Guo, Yan Cai, and Zijiang Yang. 2017. AtexRace: Across Thread and Execution
Sampling for In-house Race Detection. In Proceedings of the 2017 11th JointMeeting

on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY,
USA, 315–325. https://doi.org/10.1145/3106237.3106242

[23] Jeff Huang. 2018. UFO: Predictive Concurrency Use-after-free Detection. In
Proceedings of the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 609–619. https://doi.org/10.1145/3180155.3180225

[24] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. 2018. Razzer: Finding Kernel Race Bugs through Fuzzing. In Razzer: Finding

Kernel Race Bugs through Fuzzing. IEEE, 0.
[25] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. 2007. Fast

and Accurate Static Data-race Detection for Concurrent Programs. In Proceedings

of the 19th International Conference on Computer Aided Verification (CAV’07).
Springer-Verlag, Berlin, Heidelberg, 226–239. http://dl.acm.org/citation.cfm?id=
1770351.1770386

[26] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race
Prediction in Linear Time. In Proceedings of the 38th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2017). ACM, New

York, NY, USA, 157–170. https://doi.org/10.1145/3062341.3062374
[27] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[28] L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9 (Sept. 1979), 690–691.
https://doi.org/10.1109/TC.1979.1675439

[29] Dyoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-After-Free with Dangling Pointers
Nullification. In Network and Distributed System Security Symposium (NDSS).

[30] Brandon Lucia and Luis Ceze. 2009. Finding Concurrency Bugs with Context-
aware Communication Graphs. In Proceedings of the 42Nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO 42). ACM, New York, NY,
USA, 553–563. https://doi.org/10.1145/1669112.1669181

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 190–200. https:
//doi.org/10.1145/1065010.1065034

[32] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace:
Effective Sampling for Lightweight Data-race Detection. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’09). ACM, New York, NY, USA, 134–143. https://doi.org/10.1145/1542476.
1542491

[33] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018, to appear. What
Happens-After the First Race? Enhancing the Predictive Power of Happens-
Before Based Dynamic Race Detection. In Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages and Applications

(OOPSLA’18). https://arxiv.org/abs/1808.00185
[34] Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative Context Bounding for

Systematic Testing of Multithreaded Programs. In Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI

’07). ACM, New York, NY, USA, 446–455. https://doi.org/10.1145/1250734.1250785
[35] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-

manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing
Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX Conference

on Operating Systems Design and Implementation (OSDI’08). USENIX Association,
Berkeley, CA, USA, 267–280. http://dl.acm.org/citation.cfm?id=1855741.1855760

[36] A. Muzahid, N. Otsuki, and J. Torrellas. 2010. AtomTracker: A Comprehensive
Approach to Atomic Region Inference and Violation Detection. In 2010 43rd

Annual IEEE/ACM International Symposium on Microarchitecture. 287–297. https:
//doi.org/10.1109/MICRO.2010.32

[37] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection
for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’06). ACM, New York, NY, USA,
308–319. https://doi.org/10.1145/1133981.1134018

[38] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and
Brad Calder. 2007. Automatically Classifying Benign and Harmful Data Races
Using Replay Analysis. In Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’07). ACM, New York,
NY, USA, 22–31. https://doi.org/10.1145/1250734.1250738

[39] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI

’07). ACM, New York, NY, USA, 89–100. https://doi.org/10.1145/1250734.1250746
[40] Chang-Seo Park and Koushik Sen. 2008. Randomized Active Atomicity Violation

Detection in Concurrent Programs. In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (SIGSOFT ’08/FSE-

16). ACM, New York, NY, USA, 135–145. https://doi.org/10.1145/1453101.1453121
[41] Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data Race Detection

in Multithreaded C++ Programs. In Proceedings of the Ninth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP ’03). ACM,
New York, NY, USA, 179–190. https://doi.org/10.1145/781498.781529

[42] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2006. LOCKSMITH:
Context-sensitive Correlation Analysis for Race Detection. In Proceedings of the

27th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’06). ACM, New York, NY, USA, 320–331. https://doi.org/10.1145/
1133981.1134019

[43] K. Qiu, Z. Zheng, K. S. Trivedi, and B. Yin. 2019. Stress Testing With Influencing
Factors to Accelerate Data Race Software Failures. IEEE Transactions on Reliability
(2019), 1–19. https://doi.org/10.1109/TR.2019.2895052

[44] Snajay Rawat, Vivek Jain, Ashish Kumar, Lucain Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In Network

and Distributed System Security Symposium (NDSS).
[45] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391–411. https://doi.org/

716

https://www.peach.tech
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2786805.2786839
https://doi.org/10.1109/TSE.2016.2537335
https://doi.org/10.1109/TSE.2016.2537335
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1145/2950290.2950310
http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=648063.747438
https://www.symantec.com/connect/blogs/double-free-vulnerabilities-part-1
https://www.symantec.com/connect/blogs/double-free-vulnerabilities-part-1
http://dl.acm.org/citation.cfm?id=1924943.1924954
http://dl.acm.org/citation.cfm?id=1924943.1924954
https://doi.org/10.1145/2393596.2393651
https://doi.org/10.1145/2393596.2393651
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/3106237.3106242
https://doi.org/10.1145/3180155.3180225
http://dl.acm.org/citation.cfm?id=1770351.1770386
http://dl.acm.org/citation.cfm?id=1770351.1770386
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/1669112.1669181
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1542476.1542491
https://arxiv.org/abs/1808.00185
https://doi.org/10.1145/1250734.1250785
http://dl.acm.org/citation.cfm?id=1855741.1855760
https://doi.org/10.1109/MICRO.2010.32
https://doi.org/10.1109/MICRO.2010.32
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/1250734.1250738
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1453101.1453121
https://doi.org/10.1145/781498.781529
https://doi.org/10.1145/1133981.1134019
https://doi.org/10.1145/1133981.1134019
https://doi.org/10.1109/TR.2019.2895052
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang

10.1145/265924.265927
[46] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In Proceedings of the 31st IEEE

Symposium on Security and Privacy.
[47] Traian Florin Serbanuta, Feng Chen, and Grigore Rosu. 2012. Maximal Causal

Models for Sequentially Consistent Systems. In Proceedings of the third Inter-

national Conference on Runtime Verification (RV’12) (LNCS), Vol. 7687. Springer,
136–150. https://doi.org/10.1007/978-3-642-35632-2_16

[48] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Presented as

part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12). USENIX,
Boston, MA, 309–318. https://www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany

[49] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the Workshop on Binary Instru-

mentation and Applications (WBIA ’09). ACM, New York, NY, USA, 62–71.
https://doi.org/10.1145/1791194.1791203

[50] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac
Flanagan. 2012. Sound Predictive Race Detection in Polynomial Time. In Pro-

ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL ’12). ACM, New York, NY, USA, 387–400.
https://doi.org/10.1145/2103656.2103702

[51] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac
Flanagan. 2012. Sound Predictive Race Detection in Polynomial Time. In Pro-

ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL ’12). ACM, New York, NY, USA, 387–400.
https://doi.org/10.1145/2103656.2103702

[52] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy (S&P).

[53] JanWen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static Race Detection
on Millions of Lines of Code. In Proceedings of the the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on

The Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY,
USA, 205–214. https://doi.org/10.1145/1287624.1287654

[54] ToddWarszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related Attacks
on Database-Backed Web Applications. In Proceedings of the 2017 ACM SIGMOD

International Conference on Mangement of Data.
[55] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. 2012. Concurrency

Attack. In 4th USENIX Workshop on Hot Topoics in Parallelism (HOTPAR).
[56] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. 2012. Concurrency

Attacks. In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism

(HotPar’12). USENIX Association, Berkeley, CA, USA, 15–15. http://dl.acm.org/
citation.cfm?id=2342788.2342803

[57] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A Coverage-driven Testing Tool for Multithreaded Programs. In Proceedings

of the ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 485–502.
https://doi.org/10.1145/2384616.2384651

[58] Michal Zalewski. Feb. 2019 (last accessed). American Fuzzy Lop. http://lcamtuf.
coredump.cx/afl/.

[59] S. Zhao, R. Gu, H. Qiu, T. O. Li, Y. Wang, H. Cui, and J. Yang. 2018. OWL:
Understanding and Detecting Concurrency Attacks. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 219–230.
https://doi.org/10.1109/DSN.2018.00033

717

https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1007/978-3-642-35632-2_16
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/1287624.1287654
http://dl.acm.org/citation.cfm?id=2342788.2342803
http://dl.acm.org/citation.cfm?id=2342788.2342803
https://doi.org/10.1145/2384616.2384651
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/DSN.2018.00033

	Abstract
	1 Introduction
	2 Challenges
	3 Background and Definitions
	3.1 Background
	3.2 Exchangeable Events

	4 Our Approach: ConVul
	4.1 Overview
	4.2 Check Exchangeable Events
	4.3 Analyze and Detect Concurrency UAFs
	4.4 Analyze and Detect Concurrency NPDs
	4.5 Analyze and Detect Concurrency DFs
	4.6 Schedule Executions

	5 Discussion
	6 Experiments
	6.1 Experiment Setup
	6.2 Effectiveness on Known Vulnerabilities
	6.3 Effectiveness on Unknown Vulnerabilities
	6.4 ConVul with Different Distances
	6.5 Ineffectiveness Analysis of Other Detectors
	6.6 Performance Evaluation

	7 Related Works
	8 Conclusion
	References

