
Greybox Fuzzing of Distributed 

Systems

Ruijie Meng

National University of Singapore

ruijie@comp.nus.edu.sg

Co-authors: George Pîrlea, Abhik Roychoudhury and Ilya Sergey

30th ACM Conference on Computer and Communications Security (CCS 2023)



Bug in Distributed Systems

2

x3 y2 x1 z6

Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Partially adopted from the Raft slides

Clients

x 1

y 2

z 6

x3 y2 x1 z6

x 1

y 2

z 6

x3 y2 x1 z6

x 1

y 2

z 6

z6Cluster

Workflow of the Raft consensus protocol:

New 

Server

Snapshot: 
compact log entries 

Leader: 
Manage replicated logs

Configuration change: 
Add or remove members



Bug in Distributed Systems

3

Membership rollback bug in Canonical Dqlite:



Testing Distributed Systems

4

Systematic testing → whitebox fuzzing

✓ Exercise complex event interleavings to find “deep” bugs

Heavyweight: require a manually-written pervasive test 

harness or a system-level interposition layer

State explosion: not able to scale to large systems

Stress testing (e.g., Jepsen) → blackbox fuzzing

✓ Low cost of adoption

✓ commendable scalability

Ineffective to reach deep program behaviors

Can we find a balance between 

ease-of-use and effectiveness?? 

But there is no greybox fuzzing 

for distributed systems.

We explore this opportunity to extend 

Jepsen with feedback guidance from 

the program behaviors

Greybox Fuzzing?



Conventional Greybox Fuzzing

5

Q1: What is the input space 

to distributed systems that 

could be explored adaptively?

A1: Schedules to inject 

faults (e.g., network partition)

Q2: What can represent 

program behaviors of 

distributed systems?

A2: Lamport timelines that 

is analogues to code paths

Q3: How to mutate inputs?

A3: Incrementally select 

action by action to construct a 

new schedule via Q-learning

We need to consider three questions while greybox fuzzing distributed systems:



Greybox Fuzzing of Distributed Systems

6

Timeline-

driven Testing

Reactive Fuzzing 

using Q-learning



Evaluation

7

Research Questions

RQ.1 Coverage achieved by Mallory: Can Mallory cover more distinct program states than Jepsen?

RQ.2 Efficiency of bug finding: Can Mallory find bugs more efficiently than Jepsen?

RQ.3 Discovering new bugs: Can Mallory discover new bugs in rigorously-tested distributed 

system implementations?

Subject Programs

• Braft • Dqlite

• MongoDB • Redis

• ScyllaDB • TiKV

Comparison

• Jepsen

Our tool Mallory and dataset are 

publicly available at:

https://github.com/

dsfuzz/mallory

Greybox Fuzzing of Distributed Systems (CCS’23)

https://github.com/dsfuzz/mallory
https://github.com/dsfuzz/mallory


RQ.1 State Coverage

8

Cover 54.27% more states

Cover same state 

number 2.24× faster



RQ.2 Efficiency of Bug Finding

9

Find more bugs

Find bugs 1.87× faster



RQ.3 Discovery of New Bugs

10

Discover 22 zero-day bugs and receive 6 CVE ID



Summary

11

Thanks!!


	Slide 1: Greybox Fuzzing of Distributed Systems
	Slide 2: Bug in Distributed Systems
	Slide 3: Bug in Distributed Systems
	Slide 4: Testing Distributed Systems
	Slide 5: Conventional Greybox Fuzzing
	Slide 6: Greybox Fuzzing of Distributed Systems
	Slide 7: Evaluation
	Slide 8: RQ.1 State Coverage
	Slide 9: RQ.2 Efficiency of Bug Finding
	Slide 10: RQ.3 Discovery of New Bugs
	Slide 11: Summary

