30th ACM Conference on Computer and Communications Security (CCS 2023)

Greybox Fuzzing of Distributed Systems

Ruijie Meng National University of Singapore ruijie@comp.nus.edu.sg

Co-authors: George Pîrlea, Abhik Roychoudhury and Ilya Sergey

Bug in Distributed Systems

• Workflow of the Raft consensus protocol:

Clients

Bug in Distributed Systems

• Membership rollback bug in Canonical Dqlite:

Testing Distributed Systems

Systematic testing \rightarrow whitebox fuzzing

- ✓ Exercise complex event interleavings to find "deep" bugs
- X Heavyweight: require a manually-written pervasive test harness or a system-level interposition layer
- X State explosion: not able to scale to large systems

Stress testing (e.g., Jepsen) → blackbox fuzzing

- ✓ Low cost of adoption
- ✓ commendable scalability
- **X** Ineffective to reach deep program behaviors

Conventional Greybox Fuzzing

• We need to consider three questions while greybox fuzzing distributed systems:

	Algorithm 1 Coverage-based Greybox Fuzzing	
	Input: Seed Inputs S	
	1: $T_{\mathbf{X}} = \emptyset$	Q3: How to mutate inputs?
Q1: What is the input space o distributed systems that could be explored adaptively?	2: $T = S$ 3: if $T = \emptyset$ then 4: add empty file to T 5: end if 6: repeat	A3: Incrementally select action by action to construct a new schedule via Q-learning
1: Schedules to inject aults (e.g., network partition)	7: $t = \text{CHOOSENEXT}(T)$ 8: $p = \text{ASSIGNENERGY}(t)$ 9: for <i>i</i> from 1 to <i>p</i> do	
	10: $t' = MUTATE_INPUT(t)$ 11:if t' crashes then12:add t' to T_X 13:else if ISINTERESTING(t') then14:add t' to T	Q2: What can represent program behaviors of distributed systems?
	 15: end if 16: end for 17: until <i>timeout</i> reached or <i>abort</i>-signal 	A2: Lamport timelines that is analogues to code paths
	Output: Crashing Inputs $T_{\mathbf{x}}$	

Greybox Fuzzing of Distributed Systems

Evaluation

Research Questions

- **RQ.1** Coverage achieved by Mallory: Can Mallory cover more distinct program states than Jepsen?
- **RQ.2** Efficiency of bug finding: Can Mallory find bugs more efficiently than Jepsen?
- **RQ.3 Discovering new bugs:** Can Mallory discover new bugs in rigorously-tested distributed system implementations?

Subject Programs

- Braft Dqlite
- MongoDB Redis
- ScyllaDB TiKV

Comparison

• Jepsen

Our tool Mallory and dataset are publicly available at:

https://github.com/ dsfuzz/mallory

RQ.1 State Coverage

Cover same state number 2.24× faster

		 \square		
Subject	State-impr	Speed-up	\hat{A}_{12}	U
Braft	59.34%	2.28×	1.00	< 0.01
Dqlite	76.14%	$2.56 \times$	1.00	< 0.01
MongoDB	36.48%	1.57×	1.00	< 0.01
Redis	58.92%	2.06×	1.00	< 0.01
ScyllaDB	48.82%	$1.88 \times$	1.00	< 0.01
TiKV	45.93%	3.07×	1.00	< 0.01
AVG	54.27%	2.24×	-	-

Cover 54.27% more states

RQ.2 Efficiency of Bug Finding

Bug ID	Type of hug	Time t	o exposu	ire
Bug ID	Type of bug	MALLORY	Jepsen	\hat{A}_{12}
Dqlite-416	Null pointer deference	0.76h	1.44h	1.00
Dqlite-356	Snapshot installing failure	T/O	T/O	0.50
Dqlite-338	Election fatal with split votes	0.16h	0.16h	0.50
Dqlite-327	Member removal failure	0.06h	0.05h	0.49
Dqlite-324	Log truncation failure	5.94h	T/O	1.00
Dqlite-323	Membership rollback failure	8.68h	T/O	1.00
Dqlite-314	Crashing on disk failure	T/O	T/O	0.50
Redis-54	Snapshot panic	3.33h	5.00h	0.95
Redis-53	Committed entry conflicting	0.87h	1.17h	0.89
Redis-51	Not handling unknown node	1.66h	6.40h	1.00
Redis-44	Loss of committed write logs	0.34h	0.58h	0.60
Redis-43	Snapshot index mismatch	0.16h	0.16h	0.50
Redis-42	Snapshot rollback failure	0.29h	0.26h	0.50
Redis-28	Split brain after node removal	9.56h	T/O	1.00
Redis-23	Aborted read with no leader	7.29h	T/O	1.00
Redis-17	Split brain and update loss	11.06h	T/O	1.00
Bugs expos	ed in total	14	9	-
Average tin	ne usage	6.13h	11.45h	-
Speed-up of	n time usage	-	1.87×	-

Find *more* bugs Find bugs 1.87× faster

RQ.3 Discovery of New Bugs

ID	Subject	Bug description	Bug checker	Bug status	Jepsen?
1	Braft	Read stale data after a newly written update is visible to others	Elle	Investigating	1
2	Braft	Leak memory of the server when killed before its status becomes running	ASan	CVE-Granted, fixed	×
3	Dqlite	Two leaders are elected at the same term due to split votes	Log checker	Confirmed	×
4	Dqlite	No leader is elected in a healthy cluster with an even number of nodes	Log checker	Confirmed, fixed	×
5	Dqlite	A node reads dirty data that is modified but not committed by another node	Elle	Confirmed	×
6	Dqlite	Lose write updates due to split brain	Elle	Confirmed	×
7	Dqlite	A null pointer is dereferenced due to missing the pending configuration	ASan	CVE-Requested	1
8	Dqlite	Leak allocated memory when failing to extend entries	ASan	CVE-Requested, fixed	×
9	Dqlite	Buffer overflow happens while restoring a snapshot	ASan	CVE-Requested	×
10	Dqlite	A node has an extra online spare	Log checker	Confirmed	×
11	Dqlite	Violate invariant as a segment cannot open while truncating inconsistent logs	Log checker	CVE-Requested	×
12	MongoDB	Not repeatable read due to missing the local write update	Elle	Confirmed	×
13	MongoDB	Not read committed due to missing the newly written update	Elle	Confirmed	×
14	Redis	Read stale data after new data is written to the same key	Elle	Confirmed	×
15	Redis	Buffer overflow due to writing data to a wrong data structure	ASan	CVE-Granted, fixed	×
16	Redis	Runtime panic on initializing a cluster due to database version mismatch	Log checker	CVE-Granted	✓
17	TiKV	No leader is elected for a long time in a healthy cluster	Log checker	Investigating	×
18	TiKV	Lose write updates due to split brain	Elle	Investigating	×
19	TiKV	Runtime fatal error when one server cannot get context before the deadline	Log checker	CVE-Granted	×
20	TiKV	Runtime fatal error in a server when the placement driver is killed	Log checker	CVE-Granted	×
21	TiKV	Runtime fatal error when failing to update max timestamp for the region	Log checker	CVE-Granted	×
22	TiKV	Monotonic time jumps back at runtime	Log checker	Investigating	1

Discover 22 zero-day bugs and receive 6 CVE ID

Summary

D	Subject	Bug description	Bug checker	Bog status	Japan?
	Beaft	Read stale data after a newly written update is visible to others	Eur	Investigating	1
2	Beaft	Leak memory of the server when killed before its status becomes running	ASan	CVE-Granted, fixed	*
	Dqlite	Two leaders are elected at the same term due to split votes	Log checker	Confirmed	*
4	Dulite	No leader is elected in a healthy cluster with an even number of nodes	a healthy cluster with an even number of nodes Log checker Confirmed, fised		*
5	Dulite	node reads dirty data that is modified but not committed by another node ELLE Confirmed		*	
6	Dulity	Lasse write updates due to split brain	EALS	Confirmed	*
7	Digite	A still pointer is dereferenced due to missing the pending configuration	ASan	CVE-Requested	1
*	Dulite	Leak allocated memory when failing to extend entries	ASan	CVE-Requested, fixed	*
	Dqlite	Buffer overflow happens while restoring a snapshot	ASan	CVE-Requested	*
10	Dqlite	A node has an extra online space	Log checker	Confirmed	*
11	Dulite	Violate invariant as a segment cannot open while truncating inconsistent logs	Log checker	CVE-Requested	*
12.	MangoZiB	Not repeatable read due to missing the local write update	file	Confirmed	×
8	MongoDB	Not read committed due to missing the newly written update	ELLE	Confirmed	*
14	Redis	Read stale data after new data is written to the same key	East	Confirmed	*
15	Redix	Buffer overflow due to writing data to a wrong data structure	ASan	CVE-Granted, fixed	*
16	Redit	Rantime panic on initializing a cluster due to database version mismatch	Log checker	CVE-Granted	1
	TIKV	No leader is elected for a long time in a healthy cluster	Log checker	Investigating	*
iX	TiKV	Lose write updates due to split brain	Essa	Investigating	*
19	TIKV	Rantime fatal error when one server cannot get context before the deafline	Log checker	CVE-Granted	*
20	TIKV	Runtime fatal error in a server when the placement driver is killed	Log checker	CVE-Granted	*
п.	TIKV	Runtime fatal error when failing to update max timestarup for the region	Log checker	CVE-Granted	*
22	TiKV	Monotonic time jumpo back at rantime	Log checker	Investigating	1

THANKS !!